Inhibition of Influenza Virus Reproduction by Active Components of «Proteflazidum» Flavonoid Composition: Putative Molecular Targets of Interaction

Authors

  • M.A. Arkhypova National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37 Prospect Beresteiskyi, Kyiv, 03056, Ukraine
  • L.G. Palchykovska Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kyiv, 03143, Ukraine
  • M.O. Platonov Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kyiv, 03143, Ukraine
  • M.P. Zavelevich R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 45 Vasylkivska Str., Kyiv, 03022, Ukraine
  • O.M. Deriabin State Scientific Control Institute of Biotechnology and Strains of Microorganisms, 14/30 Volynska Str., Kyiv, 02000, Ukraine
  • V.P. Atamaniuk Ecopharm Research and Production Company, Research and Development Unit, 136-B Naberezhno-Korchevatska Str., Kyiv, 03045, Ukraine
  • D.B. Starosyla SI «L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine», 5 Amosova Str., Kyiv, 03038, Ukraine
  • S.L. Rybalko SI «L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine», 5 Amosova Str., Kyiv, 03038, Ukraine

DOI:

https://doi.org/10.15407/microbiolj86.01.026

Keywords:

flavonoids, influenza virus, antiviral substances, RNA polymerase, PB2 subunit, molecular docking

Abstract

The search for substances possessing antiviral activities, in particular anti-influenza activity, is of importance for designing new drugs that may be effective in combating viral infections. The antiviral substances of the natural origin such as flavonoids and their derivatives are in the focus of numerous studies. The topical problem is the elucidation of the mechanisms of the interaction between flavonoid substances and the virus-specific targets in infected cells. Aim. To assess the activity of the flavonoid-enriched composition containing the biologically active substances of Proteflazidum against influenza virus in vitro and in vivo and to analyze in silico the putative interactions of the flavonoid components of the composition with PB2 subunit of viral RNA-polymerase. Methods. The anti-influenza effects of flavonoid-enriched composition prepared from the extracts of Deschampsia caespitosa L. and Calamagrostis epigeios L. were assessed in vitro in MDCK cells and in vivo in white outbred mice. Virion RNA was analyzed by RT-PCR with the primers detecting the transcripts of PB1 and PB2 subunits of viral RNA-polymerase and hemagglutinin. The potential interaction of the representative flavonoids of the composition with PB2 subunit of RNA-polymerase was analyzed in silico by molecular docking. Results. The composition under study inhibits effectively replication of А/FM/1/47 (H1N1) strain of influenza virus in vitro and protects the mice against flu infection both in therapeutic and preventive modes of its administration. According to the molecular docking findings, all three major flavonoid compounds of the composition, quercetin, luteolin, and apigenin, interact similarly with the PB2 domain of viral RNA-polymerase. Conclusions. The flavonoid composition containing the biologically active substances of Proteflazidum could be considered as the anti-flu drug with the PB2 subunit of viral RNA-polymerase being one of its potential molecular targets.

Downloads

Download data is not yet available.

References

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1 – 2, 19—25.

Atamaniuk, V.P. (2017). Biological Active Substance of Polypharmacological Action of Plant Origin. Retrieved November 3, 2023, from https://patents.google.com/patent/EA201700340A1/en

Badshah, S. L., Faisal, S., Muhammad, A., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2021). Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy, 140, 111596.

Bandarage, U. K., Clark, M. P., Perola, E., Gao, H., Jacobs, M. D., Tsai, A., Gillespie, J., Kennedy, J. M., Maltais, F., Ledeboer, M. W., Davies, I., Gu, W., Byrn, R. A., Nti Addae, K., Bennett, H., Leeman, J. R., Jones, S. M., O’Brien, C., Memmott, C., Bennani, Y., … Charifson, P. S. (2017). Novel 2-Substituted 7-Azaindole and 7-Azaindazole Analogues as Potential Antiviral Agents for the Treatment of Influenza. ACS medicinal chemistry letters, 8(2), 261—265.

Choi, H. J., Song, J. H., Park, K. S., & Kwon, D. H. (2009). Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. European Journal of Pharmaceutical Sciences, 37(3—4), 329 — 333.

Di Petrillo, A., Orrù, G., Fais, A., & Fantini, M. C. (2021). Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research, 36(1), 266 — 278.

Ferron, F., Decroly, E., Selisko, B., & Canard, B. (2012). The viral RNA capping machinery as a target for antiviral drugs. Antiviral Research, 96(1), 21—31.

Gansukh, E., Nile, A., Kim, D. H., Oh, J. W., & Nile, S. H. (2021). New insights into antiviral and cytotoxic potential of quercetin and its derivatives — A biochemical perspective. Food Chemistry, 334, 127508.

Glanz, V. Y., Myasoedova, V. A., Grechko, A. V., & Orekhov, A. N. (2018). Inhibition of sialidase activity as a therapeutic approach. Drug Design, Development and Therapy, Volume 12, 3431 — 3437.

Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135 — 2145.

Imanishi, N., Tuji, Y., Katada, Y., Maruhashi, M., Konosu, S., Mantani, N., Terasawa, K., & Ochiai, H. (2002). Additional Inhibitory Effect of Tea Extract on the Growth of Influenza A and B Viruses in MDCK Cells. Microbiology and Immunology, 46(7), 491—494.

Kai, H., Obuchi, M., Yoshida, H., Watanabe, W., Tsutsumi, S., Park, Y. K., Matsuno, K., Yasukawa, K., & Kurokawa, M. (2014). In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). Journal of Functional Foods, 8, 214 — 223.

Killian, M. L. (2014). Hemagglutination assay for influenza virus. Methods in Molecular Biology (Clifton, N.J.), 1161, 3—9.

McKimm-Breschkin, J.L. (2013). Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses, 7 Suppl 1(Suppl Suppl 1), 25 — 36.

Mcmartin, C., & Bohacek, R.S. (1997). Journal of Computer-Aided Molecular Design, 11(4), 333 — 344.

Morimoto, R., Hanada, A., Matsubara, C., Horio, Y., Sumitani, H., Ogata, T., & Isegawa, Y. (2022). Anti-influenza A virus activity of flavonoids in vitro: a structure—activity relationship. Journal of Natural Medicines, 77(1), 219 — 227.

Plot ch, S. J., Bouloy, M., Ulmanen, I., & Krug, R. M. (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 23(3), 847 — 858.

Stefanov, O. V. (Ed.). (2001). Doklinichni doslidzhennia likarskykh zasobiv: metodychni rekomendatsii [Preclinical Study of Medicinal Products: Methodical Guide]. Avitsena.

Sudakov, O., Balinskyi, O., Platonov, М., & Kovalskyy, D. (2013). Geometric filters for protein—ligand complexes based on phenomenological molecular models. Biopolymers & Cell, 29(5), 418 — 423.

Takashita, E. (2020). Influenza Polymerase Inhibitors: Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine, a038687.

Tian, Y., Sang, H., Liu, M., Chen, F., Huang, Y., Li, L., Liu, S., & Yang, J. (2020). Dihydromyricetin is a new inhibitor of influenza polymerase PB2 subunit and influenza-induced inflammation. Microbes and Infection, 22(6 – 7), 254 — 262.

Trokhymchuk, T., Zavelevich, M., Liulchuk, M., Starosyla, D., Rybalko, S., & Rudenko, A. (2017). In vitro study of anti-HIV activity of proteflazid herbal composition. Am J Fundam Appl & Exp Res, 7, 87 — 91.

Wang, L., Song, J., Liu, A., Xiao, B., Li, S., Wen, Z., Lu, Y., & Du, G. (2020). Research Progress of the Antiviral Bioactivities of Natural Flavonoids. Natural products and bioprospecting, 10(5), 271 — 283.

Warren, G. L., Andrews, C. W., Capelli, A. M., Clarke, B., LaLonde, J., Lambert, M. H., Lindvall, M., Nevins, N., Semus, S. F., Senger, S., Tedesco, G., Wall, I. D., Woolven, J. M., Peishoff, C. E., & Head, M. S. (2006). A critical assessment of docking programs and scoring functions. Journal of medicinal chemistry, 49(20), 5912 — 5931.

Watanabe, W., Konno, K., Ijichi K., Inoue, H., Yokota, T., & Shigeta, S. (1994). MTT colorimetric assay system for the screening of anti-orthomyxo- and anti-paramyxoviral agents. Journal of Virological Methods, 48(2—3), 257 — 265.

Yazawa, K., Kurokawa, M., Obuchi, M., Li, Y., Yamada, R., Sadanari, H., Matsubara, K., Watanabe, K., Koketsu, M., Tuchida, Y., & Murayama, T. (2011). Anti-influenza virus activity of tricin, 4’,5,7-trihydroxy-3’,5’-dimethoxyflavone. Antiviral chemistry & chemotherapy, 22(1), 1 — 11.

Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: promising natural compounds against viral infections. Archives of Virology, 162(9), 2539—2551.

Zhang, Z., Morris‐Natschke, S. L., Cheng, Y., Lee, K., & Li, R. (2020). Development of anti‐influenza agents from natural products. Medicinal Research Reviews, 40(6), 2290 — 2338.

Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359 — 2368.

Downloads

Published

2024-02-23

How to Cite

Arkhypova, M., Palchykovska, L., Platonov, M., Zavelevich, M., Deriabin, O., Atamaniuk, V., Starosyla, D., & Rybalko, S. (2024). Inhibition of Influenza Virus Reproduction by Active Components of «Proteflazidum» Flavonoid Composition: Putative Molecular Targets of Interaction. Mikrobiolohichnyi Zhurnal, 86(1), 26-38. https://doi.org/10.15407/microbiolj86.01.026