Bioluminescent Activity Preservation of Photobacterium phosphoreum Using Microbial Exopolysaccharide Compositions
DOI:
https://doi.org/10.15407/microbiolj86.06.003Keywords:
Photobacterium phosphoreum, bioluminescence, exopolysaccharide (EPS)-xanthan, copolymer EPAA, gel compositionsAbstract
Biosensorics is a new branch of analytical biotechnology, one of the main directions of which is the development of electrochemical biosensors. Microorganisms capable of bioluminescence are often used in biosensor systems. Such microorganisms include marine bioluminescent bacteria Aliivibrio ficsheri, Vibrio campbellii, Vibrio harveyi, Photobacterium phosphoreum, etc. Since these marine microorganisms require rather complex environments for their cultivation and maintenance of the luminescence process, the development of an environment for improving the bioluminescence process is extremely urgent. In the course of many years of research, employees of the Department of Phytopathogenic Bacteria and other departments of the Zabolotny Institute of Microbiology and Virology of Ukrainian National Academy of Sciences have developed a number of gel preparations using copolymer EPAA (based on the microbial exopolysaccharide (EPS) xanthan and polyacrylamide) and lipcogenic compositions based on it. In particular, gel preparations of Pantoea agglomérans, and Bradyrhizobium jaronicum, Bacillus thuringiensis have been developed. The use of these compositions made it possible to improve and prolong the storage titers of these drugs and the output of certain metabolites. Considering this, the aim of our research was the development of a gel medium using EPS, copolymer EPAA, and gel compositions based on it, which could ensure long-term and high- luminescence of Photobacterium phosphoreum bacteria. Methods. Classic microbiological and static methods were used in the research. Results. It is shown that the optimal medium for the cultivation of P. phosphoreum B-7071 based on the preservation of luminescence intensity indicators used in microbial biosensors is a mixture of 2% lipocogenic composition D (70% EPAA + 30% EPS–xanthan) and 3% NaCl solution in a ratio of 1:1 for 50% occupancy of the polypropylene container. Conclusions. The results obtained correlate with the data of the literature since it is shown that, like in the experiments with P. phosphoreum B-7071, the addition of EPAA, EPS, and/or lipcogenic compositions based on them to the culture medium of microorganisms has a positive effect on the processes of growth and development of this strain as well as their synthesis of separate groups of metabolites associated with bioluminescence.
Downloads
References
Barcelos, M. C. S., Vespermann, K. A. C., Pelissari, F. M., & Molina G. (2020). Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition, 60(9), 1475-1495. https://doi.org/10.1080/10408398.2019.1575791
Bruisson, S., Zufferey, M., L'Haridon, F., Trutmann, E., Anand, A., Dutartre, A., De Vrieze, M., & Weisskopf, L. (2019). Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Frontiers in Microbiology, 10(2726). https://doi.org/10.3389/fmicb.2019.02726
Dankevych, L. A., Patyka, V. P., Votselko, S. K., Leonova, N. O., Biliavska, L. O., Litvinchuk, O. O., Krut', V. V., Lytovchenko, A. M., Kyrylov, B.O., Ostakh, M. M., Hniedets, V. P., Pioro, S. A. (2023). Biological preparation EPAA and the integrated system of plant protection. Guidelines. "Art-Mill" LLC.
Fernández-Piñas, F., Rodea-Palomares, I., Leganés, F., González-Pleiter, M., Angeles Muñoz-Martín, M. (2014). Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms. Advances in Biochemical Engineering/Biotechnology, Springer, Berlin, Heidelberg, 145(65), 135. https://doi.org/10.1007/978-3-662-43619-6_3
Gorgo, Y., Gretsky, I., Demydova, O. (2018). The use of luminous bacteria Photobacterium phosphoreum as a bioindicator of geomagnetic activity. Innovative Biosystems and Bioengineering, 2(4), 271-277. https://doi.org/10.20535/ibb.2018.2.4.151459
Gretsky, I., Gromozova, E., Votselko, S. (2017). Use of the polysaccharides composition of microbial origin for cultivation luminous bacteria Photobacterium phosphoreum ІMV B-7071. Scientific Issues Ternopil Volodymyr Hnatiuk National Pedagogical University Ser. Biology, 2(69), 46-51.
Каtsev, А. М., Аbduramanova, Е. Р., Starodub, N. F. Immobilization of bioluminescent bacteria on the nonorganic substances and estimation of their ability for biotesting. Biotechnology, 2009, 2(3), 74-79.
Krishnamurthy, M., Uthaya, C., Thangavel, M., Annadurai, V., Rajendran, R., Gurusamy, A. (2020). Optimization, compositional analysis, and characterization of exopolysaccharides produced by multimetal resistant Bacillus cereus KMS3-1. Carbohydr Polym, 227, 115369. https://doi.org/10.1016/j.carbpol.2019.115369
Krut', V. V., Dankevych, L. A., Votselko, S. K., Patyka, V. P. (2014). Influence of different adhesive composition on sporulation and protein synthesis by Bacillus thuringiensis collection strains. Mikrobiol Z, 76(5), 34-41.
Lee, J., Müller, F., Visser, A. (2019). The sensitized bioluminescence mechanism of bacterial luciferase. Photochemistry and Photobiology, 95(3), 679-704. https://doi.org/10.1111/php.13063
Mohd, Nadzir M., Nurhayati, R. W., Idris, F. N., Nguyen, M. H. (2021). Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers (Basel), 13(4), 530. https://doi.org/10.3390/polym13040530
Niknezhad, S., Morowvat, M., Najafpour Darzi G., Iraji A., Ghasemi Y. (2018). Exopolysaccharide from Pantoea sp. BCCS 001 GH isolated from nectarine fruit: production in submerged culture and preliminary physicochemical characterizations. Food Science Biotechnology, 27(6), 1735-1746. https://doi.org/10.1007/s10068-018-0409-y
Patyka, V. P., Pasichnyk, L. A., Butsenko, L. M., Petrychenko, V. F., Zubachov, S. R, Dankevych, L. A., Gnatiuk, T. T., Huliaieva, H. B., Tokovenko, I. P., Kalinichenko, A. V., Suszanowicz, D., Kurash, P., Patyka, T. I., Karpenko, V. P., Kyrylenko, L. V., Demchenko, A. A. (2019). Express diagnostics of phytopathogenic bacteria and phytoplasmas in agrophytocenosis. Guidelines. Wydawnictwo i Drukarnia Świętego Krzyża.
Paulson, D. S. Biostatistics and microbiology: Introduction. (2008). In: Biostatistics and Microbiology: A Survival Manual. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77282-0
Ramamoorthy, S., Gnanakan, A., Lakshmana, S., Meivelu, M., Jeganathan, A. (2018). Structural characterization and anti-cancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis. Carbohydrate Polymers, 190, 113-120. https://doi.org/10.1016/j.carbpol.2018.02.047
Rana, S., Upadhya, L. (2020). Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications. International Journal of Biological Macromolecules, 157, 577-583. https://doi.org/10.1016/j.ijbiomac.2020.04.084
Ranjan, R., Alamanova, A., Sarangova, A., Kratasyuk, V. A. (2023). Implication of storage conditions on luminescence response from Photobacterium phosphoreum in free and immobilized form. Luminescence, 38(6), 717-721. https://doi.org/10.1002/bio.4499
Wang, M., Geng, L., Xue, B., Wang, Z., Xu W., Shu C., Zhang J. (2021). Structure characteristics and function of a novel extracellular polysaccharide from Bacillus thuringiensis strain 4D19. International Journal of Biological Macromolecules, 89, 956-964. https://doi.org/10.1016/j.ijbiomac.2021.08.193
Zayed, A., Mansour, M. K., Sedeek, M. S., Habib, M. H., Ulber, R., Farag, M. A. (2022). Rediscovering bacterial exopolysaccharides of terrestrial and marine origins: novel insights on their distribution, biosynthesis, biotechnological production, and future perspectives. Critical Reviews in Biotechnology, 42(4), 597-617.
Zdorovenko, E., Kadykova, A., Shashkov, A., Varbanets, L., Bulyhina, T. (2019). Pantoea agglomerans P1a lipopolysaccharide: Structure of the O-specific polysaccharide and lipid A and biological activity. Carbohydrate Research, 484, 107767. https://doi.org/10.1016/j.carres.2019.107767
Zeb, B.S., Ping, Z., Lin, Q., Akhter, M.S., Allah, D., Qaisar, M., Hashem, A., Dawoud, T. M., Abd Allah E. F. (2023). Model anaerobic microbe Photobacterium phosphoreum: a potential biosensor for different metals and volatile fatty acids toxicity during wastewater treatment. Pol J Environ Stud, 32(5), 4385-4392. https://doi.org/10.15244/pjoes/166351
Zelena, L., Gretsky, I., Gromozova, E. (2014). Influence of ultrahigh frequency irradiation on Photobacterium phosphoreum luxb gene expression. Central European Journal of Biology, 9(10), 1004-1010. https://doi.org/10.2478/s11535-014-0347-5
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mikrobiolohichnyi Zhurnal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.