Characterization of Integron Genes of Clinical Isolates of Pseudomonas aeruginosa which Perform Resistance to Antibiotics and Biofilm Formation by these Strains

Authors

  • A.F. Alfarras Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Iraq
  • W.A. Al-Daraghi Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Iraq

DOI:

https://doi.org/10.15407/microbiolj86.01.003

Keywords:

integron, antibiotic resistance, Pseudomonas aeruginosa, biofilm

Abstract

Pseudomonas aeruginosa is a bacterium that holds significant clinical and epidemiological significance. It serves as the principal etiological cause of opportunistic infections in individuals with impaired immune systems. Integrons are known to have a notable impact on Gram-negative bacteria, particularly in the context of P. aeruginosa, a bacterium recognized for its ability to develop resistance to antimicrobial drugs. Aim. To systematically characterize and detect integron genes (intI, intII, intIII) with antibiotic-resistant and biofilm-forming capabilities in isolated P. aeruginosa. Methods. A total of 209 samples were collected from Al Yarmouk Teaching Hospital in Baghdad City, Iraq to isolate P. aeruginosa. The process of bacterial identification was carried out phenotypically and by biochemical tests. Antibiotic susceptibility was measured using the Vitek2 system. Biofilm quantification was done by the microtiter method. The PCR approach was employed to assess the presence of class 1, 2, and 3 integrons. Results. P. aeruginosa was identified in 83 isolates by using a combination of morphological and biochemical examinations where all isolates showed the ability to grow a selective medium on cetrimide agar for P. aeruginosa. The results also showed significant variances (p < 0.05) among the percentage of a number of samples and isolated P. aeruginosa. The burn and wound infection scored the highest percentages (25% and 19%) based on the positivity of P. aeruginosa, whereas burn and ear sites scored the highest percentage (58% and 50%). Also, the isolates show the ability to form biofilm at a percentage of 68.7% with resistance to a high number of antibiotics. The multidrug-resistant and sensitive P. aeruginosa isolates scored high percentages (49.4% and 34.9%) whereas potentially pan drug-resistant and extensively drug-resistant isolates scored low percentages (2.4% and 13.3%). PCR results showed that integron I scored the highest percentage (100%) compared to integron 2 found in 3 (10%) isolates, and no intI3 gene was detected in any of the P. aeruginosa isolates. Conclusions. Overall, the findings of the present investigation indicate that integrons and biofilm development are recognized as significant factors contributing to antibiotic resistance in P. aeruginosa. The prevalence of class 1 integrons is shown to be significantly high in all bacterial isolates, with a complete occurrence rate of 100%. This high incidence of class 1 integrons is associated with the development of resistance to crucial antibiotics, including β-lactams, aminoglycosides, and cephalosporins.

Downloads

Download data is not yet available.

References

Abd-Elmonsef, M. M. E., & Maxwell, S. Y. (2022). Class 1, 2 and 3 integrons in clinical Pseudomonas aeruginosa isolated from Tanta University Hospitals, Egypt. Journal of Chemotherapy, 34(4), 241—246.

Abd El-Baky, R. M., Masoud, S. M., Mohamed, D. S., Waly, N. G. F. M., Shafik, E. A., Mohareb, D. A., Elkady, A., Elbadr, M. M., & Hetta, H. F. (2020). Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Infection and Drug Resistance, 13, 323—332.

Abdulla, A. A., & Almuttairi, A. A. (2023). Occurrence of Class 1, 2, and 3 Integrons among Multidrugresistant Pseudomonas aeruginosa in Babylon Province, Iraq. Medical Journal of Babylon, 20(1), 181 – 187.

Al-Bayati, S. S., Al-Ahmer, S. D., Shami, A.-M. M., & Al-Azawi, A. H. (2021). Isolation and identification of Pseudomonas aeruginosa from clinical samples. Biochemical and Cellular Archives, 21, 3931—3935.

Al-Daraghi, W. A. H., Al-Badrwi, M. S. A., & Jassim, H. R. (2020). Molecular detection of Pseudomonas aeruginosa and its relationship with multidrug resistance and transposons. Indian Journal of Forensic Medicine and Toxicology, 14(2), 373—378.

Al-Mamari, N. M. H. (2019). Isolation and Identification of Pseudomonas aeruginosa from Some Clinical and Environmental Samples and Study Its Activity for The Production of Pyocyanin and Protease. Journal of Education and Science, 28(4), 93—107.

Al-Mayyahi, A. W., AL-Hashimy, A. B., & AL-Awady, K. R. (2018). Molecular detection of exoU and exoS among Pseudomonas aeruginosa isolates from Baghdad and Wasit, Iraq. Iraqi Journal of Biotechnology, 17(1), 1—8.

Al-Shamaa, N. F. K., Abu-Risha, R. A., & AL-Faham, M. A. (2016). Virulence genes profile of Pseudomonas aeruginosa local isolates from burns and wounds. Iraqi Journal of Biotechnology, 15(3), 31-39

Al-Sheikhly, M. A. A. R. H., Musleh, L. N., & Al-Mathkhury, H. J. F. (2019). Assessment of pelA-carried Pseudomonas aeruginosa isolates in respect to biofilm formation. Iraqi Journal of Science, 60(6), 1180—1187.

Al-Shimmary, S. M. (2020). Molecular identification and prevalence of some virulence genes among Pseudomonas aeruginosa isolated from Iraqi patients. International Journal of Pharmaceutical Research, Supplementary Issue 1: 1542.

Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350—359.

Babosan, A., Gaschet, M., Muggeo, A., Jové, T., Skurnik, D., Ploy, M.-C., de Champs, C., Reffuveille, F., & Guillard, T. (2022). A qnrD-Plasmid Promotes Biofilm Formation and Class 1 Integron Gene Cassette Rearrangements in Escherichia coli. Antibiotics (Basel, Switzerland), 11(6).

Botelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa — Mechanisms, epidemiology and evolution. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 44, 26 – 47.

Faghri, J., Nouri, S., Jalalifar, S., Zalipoor, M., & Halaji, M. (2018). Investigation of antimicrobial susceptibility, class I and II integrons among Pseudomonas aeruginosa isolates from hospitalized patients in Isfahan, Iran. BMC Research Notes, 11, 1—5.

Gajdács, M., Baráth, Z., Kárpáti, K., Szabó, D., Usai, D., Zanetti, S., & Donadu, M. G. (2021). No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: Results from a laboratory-based in vitro study. Antibiotics, 10(9), 1—16.

Ghaly, T. M., Tetu, S. G., & Gillings, M. R. (2021). Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Communications Biology, 4(1), 946.

Guangchao, Y., Yanmei, L., Xiaochen, L., Xihong, Z., & Yanyan, L. (2013). Role of integrons in antimicrobial resistance: A review. African Journal of Microbiology Research, 7(15), 1301—1310.

Jalil, M., Abdulhussien, Z., Al, H., & Hmudi. (2018). Isolation and Identification of Multi Drug Resistant Biofilm Producer Pseudomonas aeruginosa From Patients with Burn Wound Infection in Basra Province/Iraq. International Journal of Development Research, 7, 17258—17262.

Karami, P., Khaledi, A., Mashoof, R. Y., Yaghoobi, M. H., Karami, M., Dastan, D., & Alikhani, M. Y. (2020). The correlation between biofilm formation capability and antibiotic resistance pattern in Pseudomonas aeruginosa. Gene Reports, 18, 100561.

Khorshidi, A., Zadeh, N., Khaledi, A., Moosavi, G., Shakerimoghaddam, A., & Matinpur, A. (2022). Investigation of class 1 integrons and biofilm formation in multi-drug resistance uropathogenic Escherichia coli isolated from patients with urinary tract infection in shohadaye qom hospital, Iran. International Archives of Health Sciences, 9(1), 47.

Khudair, A. N., & Mahmood, S. S. (2021). Detection of the antiseptic resistance gene among Pseudomonas aeruginosa isolates. Iraqi Journal of Science, 62(1), 75—82.

Lisch, D., & Bennetzen, J. L. (2011). Transposable element origins of epigenetic gene regulation. Current Opinion in Plant Biology, 14(2), 156—161.

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. In Clinical Microbiology and Infection, 18(3), 268—281.

Mohsenzadeh, A., Fazel, A., Bavari, S., Borji, S., Pourasghar, S., Azimi, T., & Sabati, H. (2021). Detecting of biofilm formation in the clinical isolates of Pseudomonas aeruginosa and Escherichia coli: an evaluation of different screening methods. Journal of Current Biomedical Reports, 2(2), 56—61.

Najafi, K., Kafil, H. S., Shokrian, S., Azimi, S., Asgharzadeh, M., Yousefi, M., & Aghazadeh, M. (2015). Virulence genes and antibiotic resistance profile of Pseudomonas aeruginosa isolates in Northwest of Iran. J Pure Appl Microbiol, 9, 383—389.

O’Toole, G. A. (2010). Microtiter dish Biofilm formation assay. Journal of Visualized Experiments, 47, 10—11.

Procop, G. W., Church, D. L., Hall, G. S., & Janda, W. M. (2020). Koneman’s color atlas and textbook of diagnostic microbiology. Jones & Bartlett Learning.

Sabbagh, P., Rajabnia, M., Maali, A., & Ferdosi-Shahandashti, E. (2021). Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iranian Journal of Basic Medical Sciences, 24(2), 136—142.

Safaei, H., Moghim, S., Isfahani, B., Fazeli, H., Poursina, F., Yadegari, S., Nasirmoghadas, P., & Nodoushan, S. H. (2017). Distribution of the Strains of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa Isolates from Burn Patients. Advanced Biomedical Research, 6(1), 74.

Salimizadeh, Z., Hashemi Karouei, S. M., & Hosseini, F. (2018). Dissemination of Class 1 Integron among Different Multidrug Resistant Pseudomonas aeruginosa Strains. Medical Laboratory Journal, 12(4), 36—42.

Shatti, H. H., Al-Saeed, W. M., & Nader, M. I. (2022). Effect Biofilm Formation in Pseudomonas aeruginosa Resistance to Antibiotic. Mustansiriya Medical Journal, 21(1), 14.

Shawkat, A. A. K. M. S. (2022). Primary and Secondary Screening of Pseudomonas aeruginosa for Protease Production. Iraqi Journal of Biotechnology, 21(2).

Shilba, A. A., Al-Azzawi, R. H., Al-Awadi, S. J., Namaa, D. S., & Shilba, A. A. (2015). Molecular detection of class1 Integron and pattern of antibiotic resistance in Pseudomonas aeruginosa isolated from burn patients in Karbala province Iraq. Iraqi Journal of Biotechnology, 14(2), 54—72.

Tuon, F. F., Dantas, L. R., Suss, P. H., & Tasca Ribeiro, V. S. (2022). Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens, 11:300.

Vidaillac, C., & Chotirmall, S. H. (2021). Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Review of Respiratory Medicine, 15(5), 649—662.

Wells, J. N., & Feschotte, C. (2020). A Field Guide to Eukaryotic Transposable Elements. Annual Review of Genetics, 54, 539—561.

Downloads

Published

2024-02-23

How to Cite

Alfarras, A., & Al-Daraghi, W. (2024). Characterization of Integron Genes of Clinical Isolates of Pseudomonas aeruginosa which Perform Resistance to Antibiotics and Biofilm Formation by these Strains. Mikrobiolohichnyi Zhurnal, 86(1), 3-13. https://doi.org/10.15407/microbiolj86.01.003