Synergistic Effect of Gentamicin and Iron Oxide Nanoparticles on phzM Gene of Pseudomonas aeruginosa


  • M.E. Ahmed Department of Biology, College of Science, University of Baghdad, Jadriya, Baghdad, Iraq
  • Z.A. Abdul Muhsin Department of Biology, College of Science, University of Baghdad, Jadriya, Baghdad, Iraq



P. aeruginosa, phzM gene, gentamicin, CT gene


The increased use of iron-containing nanoparticles and green synthesis nanoparticles is beneficial and less harmful to the environment and human health. Working antimicrobial peptide functions by inhibiting the virulence factor of Pseudomonas aeruginosa, which is the essential mechanism of drug resistance by possessing an efflux pump important virulent factor. The main aim of the research was to study the effects of synergistic action of gentamicin (GNT) and iron nanoparticles (IONps) to solve the problem of multidrug-resistant P. aeruginosa. Methods. The isolation and identification of multidrug-resistant P. aeruginosa from burns and wound infections were carried out using the VITEK 2 system, and the phzM genes were detected in all the strains. The effectiveness of IONps and their role in reducing phzM gene expression were investigated. Results. The characterization of IONps biologically manufactured using a wavelength spectrum UV-vis spectrophotometer (maximum peak at 600 nm) and tests of atomic force microscopy showed that their diameter reached 34 nm. An electron microscope examination revealed that the produced particles were spherical, indicating good homogeneity and quality of the IONps. The results showed significant down-regulation changes in phzM expression after treatment with GNT and IONps. The result of qRT-PCR in this study revealed that the fold change in the expression of the phzM gene was downregulated in response to the IONps (8µg/mL) + GNT (16µg/mL) combination. Conclusions. One of the justifications for using P. aeruginosa in preparing IONps is that this bacteria needs iron as a growth promoter, which helps in the formation of IONps. The inhibitory effect on the efflux pump gene expression may represent a potential strategy for controlling P. aeruginosa infections.


Download data is not yet available.


Almaghrabi, R. S., Macori, G., Sheridan, F., McCarthy, S. C., Floss-Jones, A., Fanning, S., & Al-Qahtani, A. A. (2024). Whole genome sequencing of resistance and virulence genes in multi-drug resistant Pseudomonas aeruginosa. Journal of Infection and Public Health, 17(2), 299-307.‏

Abed, I. J., Ahmed, M. E., & AL-Shimmary, S. (2021). Rosemary volatile oil as a preservative agent in some canned meat foods. Iraqi Journal of Agricultural Sciences, 52(1).‏

Ahmed M. E., Al-Awadi A. Q., & Abbas A. F. (2023). Focus of Synergistic Bacteriocin-Nanoparticles Enhancing Antimicrobial Activity Assay. Microbiol J, 6, 95-104.

Ahmed, M. E. (2018). The study of bacteriocin of Pseudomonas fluorescens and Citrus limon effects against Propionibacterium acnes and Staphylococcus epidermidis in acne patients. In Journal of Physics: Conference Series (Vol. 1003, No. 1, p. 012004). IOP Publishing.‏

Ahmed, M. E., & Al-Awadi, A. Q. (2024). Enterococcus faecium bacteriocin efflux pump mexa gene and promote skin wound healing in mice. Journal of microbiology, biotechnology and food sciences, e10711-e10711.‏

Ahmed, M. E., & Al-Shimmary, S. M. (2018). Comparative study between Pure Bacterocin and Vancomycin on Biofilms of MRSA isolated from medical implants. Journal of Pharmaceutical Sciences and Research, 10(6), 1476-1480.‏

Ahmed, M. E., Ahmed, Z. M., & Thamer, A. (2020). The Evolutionary Effects of Bacillin and S-Pyocin Bacteriocin and their Effects on Propionibacterium Acnes and Fungi. Biochemical & Cellular Archives, 20.

Ahmed, M. E., Mousa, I. S., Al-Halbosiy, M. M., & Jabar, E. (2018). The anti-Leishmaniasis activity of Purified Bacteriocin Staphylococcin and Pyocin Isolated from Staphylococcus aureus and Pseudomonas aeruginosa. Iraqi Journal of Science, 645-653.‏

Ahmed, M. E., Q Al-lam, M., & Abd Ali, D. D. M. (2021). Evaluation of antimicrobial activity of plants extract against bacterial pathogens isolated from urinary tract infection among males patients. Al-Anbar Medical Journal, 17(1), 20-24.‏

Ahmed, Mais E., & Kadhim, Alaa R. (2020). Alternative Preservatives OF A "Nisin A" WITH Silver Nanoparticles for Bacteria Isolation from the Local Food Markets of Baghdad City. Prof. (Dr) Rk Sharma, 20.4, 4975.

Al-Awsi, G. R. L., Alameri, A. A., Al-Dhalimy, A. M. B., Gabr, G. A., & Kianfar, E. (2023). Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Brazilian Journal of Biology, 84.‏

Al-Brahim, J. S. (2023). Saussurea costus extract as bio mediator in synthesis iron oxide nanoparticles (IONPs) and their antimicrobial ability. Plos one, 18(3), e0282443.‏

Al-Sheikhly, M. A. R. H., Musleh, L. N., & Al-Mathkhury, H. J. (2020). Gene expression of pelA and pslA in Pseudomonas aeruginosa under gentamicin stress. Iraqi journal of Science, 295-305.‏

Awatif. M., Ban S., & Aseel M. H. (2023). Antimicrobial and Histological Effects of Nano-Neomycin Solution against Different Microbial Population. International Journal of Applied Sciences and Technology, 5(3).

Dan afar, H., Kheiri Manjili, H., Sharafi, A., Attari, E., Danafar, H., Manjili, H., & Niu, G. (2018). Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug research, 68(05), 280-285.‏

Dwivedi, G. R., Tyagi, R., Sanchita, Tripathi, S., Pati, S., Srivastava, S. K. & Sharma, A. (2018). Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. Journal of Biomolecular Structure and Dynamics, 36(16), 4270-4284.‏

El-Sapagh, S., El-Shenody, R., Pereira, L., & Elshobary, M. (2023). Unveiling the potential of algal extracts as promising antibacterial and antibiofilm agents against multidrug-resistant Pseudomonas aeruginosa: in vitro and in silico studies including molecular docking. Plants, 12(18), 3324.‏

Faiq, N. H., & Ahmed, M. E. (2024). Inhibitory Effects of Biosynthesized Copper Nanoparticles on Biofilm Formation of Proteus mirabilis. Iraqi Journal of Science, 65-78.‏

Faisal, S., Sadiq, S., Mustafa, M., Khan, M. H., Sadiq, M., Iqbal, Z., & Khan, M. (2023). Tailoring the antibacterial and antioxidant activities of iron nanoparticles with amino benzoic acid. RSC Sustainability, 1(1), 139-146.‏

Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). Do iron oxide nanoparticles have significant antibacterial properties? Antibiotics, 10(7), 884.‏

Ismael, B. A., & Zaidan, I. A. (2023). Evolution the Synergistic effect of ZnS nanoparticles with antibiotic against multi-drug resistance bacteria. Pakistan Heart Journal, 56(2), 429-438.‏

Jabłońska, J., Dubrowska, K., Augustyniak, A., Wróbel, R. J., Piz, M., Cendrowski, K., & Rakoczy, R. (2022). The influence of nanomaterials on pyocyanin production by Pseudomonas aeruginosa. Applied Nanoscience, 12(6), 1929-1940.‏

Jaffar, N., Miyazaki, T., & Maeda, T. (2016). Biofilm formation of periodontal pathogens on hydroxyapatite surfaces: Implications for periodontium damage. Journal of Biomedical Materials Research Part A, 104(11), 2873-2880.‏

Jennifer Borcherdinga, Jonas Baltrusaitis & Haihan Chenb. (2014). Iron Oxide Nanoparticles Induce Pseudomonas aeruginosa Growth, Induce Biofilm Formation, and Inhibit Antimicrobial Peptide Function. Environ Sci Nano. 1(2), 123-132.

Kadima, Zahraa H., Mais E. Ahmed, Ilker Şimşek. (2023). Biologically synthesized Copper Nanoparticles from S. epidermidis on resistant S. aureus and cytotoxic assay. Bionatura Issue 1, Vol 8, No 1.

Lafta, F. M., Mohammed, R. K., Alhammer, A. H., & Ahmed, M. E. (2023). Cytotoxic Potential of Neem (Azadirachta indica A. Juss) Oil. Tropical Journal of Natural Product Research, 7(12).‏

Lakshminarayanan, S., Shereen, M. F., Niraimathi, K. L., Brindha, P., & Arumugam, A. (2021). One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific Reports, 11(1), 8643.‏

Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology advances, 32(4), 711-726.‏

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408.‏

Mais E. Ahmed, & Khadija Salama. (2020).A Comparison of the Effects of Lemon Peel-Silver Nanoparticles Versus Brand Toothpastes and Mouthwashes on Staphylococcus spp. Isolated from Teeth Caries. Iraqi Journal of Science. 61(8), 1894-1901.

Majeed, S. M., Ahmed, M. E., & Ali, I. A. (2022). Comparison of Sizes of Zinc Oxide Nanoparticles Extracted from Staphylococcus lugdunensis and Berberis vulgaris Plant Extract against Some Types of Bacteria and Yeast. Journal of Drug Delivery Technology, 12(1), 103-107.‏

Malhotra, N., Lee, J. S., Liman, R. A. D., Ruallo, J. M. S., Villaflores, O. B., Ger, T. R., & Hsiao, C. D. (2020). Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules, 25(14), 3159.‏

Mohammed, L. S., & Ahmed, M. E. (2020). Effects of ZnO NPS on Streptococcus pyogenes in vivo. Ann Trop Med & Public Health, 23, 452.‏

Montelongo‐Martíne, L. F., Hernández‐Méndez, C., Muriel‐Millan, L. F., Hernández‐Estrada, R., Fabian‐Del Olmo, M. J., González‐Valdez, A., & Cocotl‐Yañez, M. (2023). Unraveling the regulation of pyocyanin synthesis by RsmA through MvaU and RpoS in Pseudomonas aeruginosa ID4365. Journal of Basic Microbiology, 63(1), 51-63.‏

Muunim, H. H., Al-Mossawei, M. T. & Emad. ahmed, M. (2019).The comparative study among the MRSAcin, nisin a and vancomycin, on biofilm formation by methicillin resistance Staphylococcus aureus isolated from food sources. International Journal of Drug Delivery Technology, 9(3), 176-181.

Muzammil, S., Hayat, S., Fakhar-E-Alam, M., Aslam, B., Siddique, M. H., Nisar, M. A., & Wang, Z. (2018). Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Front Biosci, 10, 352-374.‏

Noor & Mais. (2023). Effect of Biosynthesized Zinc oxide Nanoparticles on Phenotypic and Genotypic Biofilm Formation of Proteus mirabilis. Published Online First: August, 2023:20, Baghdad Science Journal.

Nowruz, J., Sepahi, A. A., & Rashnonejad, A. (2012). Pyocyanine biosynthetic genes in clinical and environmental isolates of Pseudomonas aeruginosa and detection of pyocyanine's antimicrobial effects with or without colloidal silver nanoparticles. Cell Journal (Yakhteh), 14(1), 7. 23626932; PMCID: PMC3635824.

Patra, J. K., & Baek, K. H. (2017). Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in microbiology, 8, 167.

Predescu, A. M., Matei, E., Berbecaru, A. C., Pantilimon, C., Drăgan, C., Vidu, R., & Kuncser, V. (2018). Synthesis and characterization of dextran-coated iron oxide nanoparticles. Royal Society open science, 5(3), 171525.‏

Remschmidt, C., Schröder, C., Behnke, M., Gastmeier, P., Geffers, C., & Kramer, T. S. (2018). Continuous increase of vancomycin resistance in enterococci causing nosocomial infections in Germany − 10 years of surveillance. Antimicrobial Resistance & Infection Control, 7, 1-7.‏

Roca, A. G., Gutiérrez, L., Gavilán, H., Brollo, M. E. F., Veintemillas-Verdaguer, S., & de Puerto Morales, M. (2019). Design strategies for shape-controlled magnetic iron oxide nanoparticles. Advanced drug delivery reviews, 138, 68-104.‏

Sabharwal, N., Dhall, S., Chhibber, S., & Harjai, K. (2014). Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. International journal of molecular epidemiology and genetics, 5(3), 125. PMID: 25379131; PMCID: PMC4214259.‏

Sanz-García, F., Hernando-Amado, S., López-Causapé, C., Oliver, A., & Martínez, J. L. (2022). Low Ciprofloxacin Concentrations Select Multidrug-Resistant Mutants Overproducing Efflux Pumps in Clinical Isolates of Pseudomonas aeruginosa. Microbiology spectrum, 10(5), e00723-22.‏

Seddiq, S. H., Zyara, A. M., & Ahmed, M. E. (2023). Evaluation the Antimicrobial Action of Kiwifruit Zinc Oxide Nanoparticles against Staphylococcus aureus Isolated from Cosmetics Tools. BioNanoScience, 1-10.‏

Shakib, P., Saki, R., Marzban, A., Goudarzi, G., Ghotekar, S., Cheraghipour, K., & Zolfaghari, M. R. (2024). Antibacterial Effects of Nanocomposites on Efflux Pump Expression and Biofilm Production in Pseudomonas aeruginosa: A Systematic Review. Current Pharmaceutical Biotechnology, 25(1), 77-92.‏

Tang, H., Yang, D., Zhu, L., Shi, F., Ye, G., Guo, H., & Li, Y. (2022). Paeonol interferes with quorum-sensing in Pseudomonas aeruginosa and modulates inflammatory responses in vitro and in vivo. Frontiers in Immunology, 13, 896874.‏

Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., LewisOscar, F., & Pugazhendhi, A. (2019). Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. Journal of Photochemistry and Photobiology B: Biology, 192, 74-82.‏

Wang, X., Gao, K., Chen, C., Zhang, C., Zhou, C., Song, Y., & Guo, W. (2023). Prevalence of the virulence genes and their correlation with carbapenem resistance amongst the Pseudomonas aeruginosa strains isolated from a tertiary hospital in China. Antonie van Leeuwenhoek, 116(12), 1395-1406.‏

Zahraa H. Kadhim, Mais E. Ahmed, Ilker Şimşek. (2022). The Synergistic Effect of Copper Nanoparticles and Vancomycin in vitro and in vivo. P J M H S Vol. 16(08).




How to Cite

Ahmed, M., & Abdul Muhsin, Z. (2024). Synergistic Effect of Gentamicin and Iron Oxide Nanoparticles on phzM Gene of Pseudomonas aeruginosa. Mikrobiolohichnyi Zhurnal, 86(3), 27-39.