Distribution, Properties, and Practical Significance of α-Galactosidase

Authors

  • N.V. Borzova Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • L.D. Varbanets Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine

DOI:

https://doi.org/10.15407/microbiolj86.02.090

Keywords:

α-galactosidase, microorganisms, distribution, properties, practical significance

Abstract

The achievements of modern enzymology have greatly expanded the possibilities of practical use of enzymes, primarily in medicine and the food industry, which is due to their advantages over chemical catalysts: selectivity and stereospecificity of action, the possibility of achieving high rates of conversion of substrates under relatively mild technological conditions, harmlessness to the environment and humans. The microbial producers have proven themselves as a convenient and economical source of biotechnologically important enzyme preparations of hydrolytic action. One of such enzymes is α-galactosidase, which has the ability to cleave terminal α-linked galactosyl residues from a wide range of natural and synthetic compounds. The review presents data on the spread of the enzyme among different groups of microorganisms and provides a comparative description of their catalytic properties. A range of issues related to the physiological role of the enzyme in plant and animal organisms, localization and functional properties in bacteria and fungi are outlined. The place of α-galactosidase of microorganisms in the modern hierarchical classification of glycosidases is shown. The areas of possible use of the enzyme as an efficient tool for the modification of oligo- and polysaccharides in various industries are described.

Downloads

Download data is not yet available.

References

Álvarez-Cao, M. E., Cerdán, M. E., González-Siso, M. I., & Becerra, M. (2019a). Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides. Microbial cell factories, 18(1), 172. https://doi.org/10.1186/s12934-019-1222-x

Álvarez-Cao, M. E., Cerdán, M. E., González-Siso, M. I., & Becerra, M. (2019b). Bioconversion of beet molasses to alpha-galactosidase and ethanol. Frontiers in microbiology, 10, 405. https://doi.org/10.3389/fmicb.2019.00405

An, J. L., Zhang, W. X., Wu, W. P., Chen, G. J., & Liu, W. F. (2019). Characterization of a highly stable α-galactosidase from thermophilic Rasamsonia emersonii heterologously expressed in a modified Pichia pastoris expression system. Microbial cell factories, 18(1), 180. https://doi.org/10.1186/s12934-019-1234-6

Anisha, G. S., John, R. P., & Prema, P. (2009). Biochemical and hydrolytic properties of multiple thermostable α-galactosidases from Streptomyces griseoloalbus: obvious existence of a novel galactose tolerant enzyme. Process Biochemistry, 44, 327-333. https://doi.org/10.1016/j.procbio.2008.11.009

Anisha, G. S. (2022). Microbial α-galactosidases: Efficient biocatalysts for bioprocess technology. Bioresource technology, 344(Pt B), 126293. https://doi.org/10.1016/j.biortech.2021.126293

Anisha, G. S. (2023). Biopharmaceutical applications of α-galactosidases. Biotechnology and applied biochemistry, 70(1), 257-267. https://doi.org/10.1002/bab.2349

Arunraj, R., Skori, L., Kumar, A., Hickerson, N. M. N., Shoma, N. M. V., & Samuel, M. A. (2020). Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in Cicer arietinum. Plant signaling & behavior, 15(8), 1709707. https://doi.org/10.1080/15592324.2019.1709707

Awan, M. S., Jalal, F., Ayub, N., Akhtar, M. W., & Rajoka, M. I. (2009). Production and characterization of α-galactosidase by a multiple mutant of Aspergillus niger in solid-state fermentation. Food technology and biotechnology, 47,370-380.

Azevedo, O., Cordeiro, F., Gago, M. F., Miltenberger-Miltenyi, G., Ferreira, C., Sousa, N., & Cunha, D. (2021). Fabry disease and the heart: a comprehensive review. International journal of molecular sciences, 22(9), 4434. https://doi.org/10.3390/ijms22094434

Bayraktar, H., & Önal, S. (2019). Cross-linked α-galactosidase aggregates: optimization, characterization and application in the hydrolysis of raffinose-type oligosaccharides in soymilk. Journal of the science of food and agriculture, 99(10), 4748-4760. https://doi.org/10.1002/jsfa.9720

Bhatia, S., Batra, N., & Singh, J. (2023). Production, purification, characterization, and applications of α-galactosidase from Bacillus flexus JS27 isolated from Manikaran hot springs. Preparative biochemistry & biotechnology, 53(4), 366-383. https://doi.org/10.1080/10826068.2022.2095572

Bhatia, S., Singh, A., Batra, N., & Singh, J. (2020). Microbial production and biotechnological applications of α-galactosidase. International journal of biological macromolecules, 150, 1294-1313. https://doi.org/10.1016/j.ijbiomac.2019.10.140

Borzova, N. V., & Varbanets, L. D. (2007) α-Galactosidase of Aspergillus niger: purification and properties. Studіа biologica, 1(1), 53-64. https://doi.org/10.30970/sbi.0101.003

Borzova, N. V., Gudzenko, O. V., & Varbanets, L. D. (2014). Role of glycosylation in secretion and stability of micromycetes α-galactosidase. Ukrainian biochemical journal, 86(6), 31-38. https://doi.org/10.15407/ubj86.06.031

Borzova, N. V., Gudzenko, O. V., & Varbanets, L. D. (2020). Features of α-galactosidase production by Penicillium restrictum. Mikrobiolohichnyi Zhurnal, 82(3), 55-64. https://doi.org/10.15407/microbiolj82.03.055

Brouns, S. J., Smits, N., Wu, H., Snijders, A. P., Wright, P. C., de Vos, W. M., & van der Oost, J. (2006). Identification of a novel alpha-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. Journal of bacteriology, 188(7), 2392-2399. https://doi.org/10.1128/JB.188.7.2392-2399.2006

Cabrera, I., Abasolo, I., Corchero, J. L., Elizondo, E., Gil, P. R., Moreno, E., Faraudo, J., Sala, S., Bueno, D., González-Mira, E., Rivas, M., Melgarejo, M., Pulido, D., Albericio, F., Royo, M., Villaverde, A., García-Parajo, M. F., Schwartz, S., Jr, Ventosa, N., & Veciana, J. (2016). α-Galactosidase-A loaded-nanoliposomes with enhanced enzymatic activity and intracellular penetration. Advanced healthcare materials, 5(7), 829-840. https://doi.org/10.1002/adhm.201500746

Cao, Y., Wang, Y., Luo, H., Shi, P., Meng, K., Zhou, Z., Zhang, Z., & Yao, B. (2009). Molecular cloning and expression of a novel protease-resistant GH-36 alpha-galactosidase from Rhizopus sp. F78 ACCC 30795. Journal of microbiology and biotechnology, 19(11), 1295-1300. https://doi.org/10.4014/jmb.0904.4003

Çelem, E. B., & Önal, S. (2022). Sepabeads EC-EP immobilized α-galactosidase: immobilization, characterization and application in the degradation of raffinose-type oligosaccharides. Process Biochemistry, 116, 136-147. https://doi.org/10.1016/j.procbio.2022.02.020

Chen, K., Zhang, J., Liu, X., Zhang, P., Yue, W., & Cai Z. (2023). High molecular weight α-galactosidase from the novel strain Aspergillus sp. D-23 and its hydrolysis performance. Processes, 11(1), 255. https://doi.org/10.3390/pr11010255

Chen, S. C., Wu, S. P., Chang, Y. Y., Hwang, T. S., Lee, T. H., & Hsu, C. H. (2020). Crystal structure of α-galactosidase from Thermus thermophilus: insight into hexamer assembly and substrate specificity. Journal of agricultural and food chemistry, 68(22), 6161-6169. https://doi.org/10.1021/acs.jafc.0c00871

Chern, M. K., Li, H. Y., Chen, P. F., & Chien, S. F. (2012). Taro α-galactosidase: a new gene product for blood conversion. Biocatalysis and agricultural biotechnology, 1, 135-139. https://doi.org/10.1016/j.bcab.2011.09.004

Chuankhayan, P., Lee, R. H., Guan, H. H., Lin, C. C., Chen, N. C., Huang, Y. C., Yoshimura, M., Nakagawa, A., & Chen, C. J. (2023). Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product. Acta crystallographica. Section D, Structural biology, 79(Pt 2), 154-167. https://doi.org/10.1107/S2059798323000037

Clarke, J. H., Davidson, K., Rixon, J. E., Halstead, J. R., Fransen, M. P., Gilbert, H. J., & Hazlewood, G. P. (2000). A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and alpha-galactosidase. Applied microbiology and biotechnology, 53(6), 661-667. https://doi.org/10.1007/s002530000344

Comfort, D. A., Bobrov, K. S., Ivanen, D. R., Shabalin, K. A., Harris, J. M., Kulminskaya, A. A., Brumer, H., & Kelly, R. M. (2007). Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochemistry, 46(11), 3319-3330. https://doi.org/10.1021/bi061521n

de la Fuente, G., & Sols, A. (1962). Transport of sugars in yeasts. II. Mechanisms of utilization of disaccharides and related glycosides. Biochimica et biophysica acta, 56, 49-62. https://doi.org/10.1016/0006-3002(62)90526-7

Delgado-Fernandez, P., Plaza-Vinuesa, L., Hernandez-Hernandez, O., de Las Rivas, B., Corzo, N., Muñoz, R., & Javier Moreno, F. (2020). Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An α-galactosidase displaying regioselective transgalactosylation. International journal of biological macromolecules, 153, 1070-1079. https://doi.org/10.1016/j.ijbiomac.2019.10.237

Dey, P. M., & Pridham, J. B. (1972). Biochemistry of -galactosidases. Advances in enzymology and related areas of molecular biology, 36, 91-130. https://doi.org/10.1002/9780470122815.ch3

Dey P. M. (1984). Characteristic features of an alpha-galactosidase from mung beans. European journal of biochemistry, 140(2), 385-390. https://doi.org/10.1111/j.1432-1033.1984.tb08113.x

Duffaud, G. D., McCutchen, C. M., Leduc, P., Parker, K. N., & Kelly, R. M. (1997). Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Applied and environmental microbiology, 63(1), 169-177. https://doi.org/10.1128/aem.63.1.169-177.1997

E. S., Potumarthi, R., A, N., & Mangamoori, L. N. (2015). Purification and characterisation of intracellular alpha-galactosidases from Acinetobacter sp. 3 Biotech, 5(6), 925-932. https://doi.org/10.1007/s13205-015-0290-9

El-Gindy, A. A., Ali, U. F., Ibrahim, Z. M., & Isaac, G. S. (2008). A cost-effective medium for enhanced production of extracellular α-galactosidase in solid substrate cultures of Aspergillus awamori and A. carbonarius. Australian journal of basic and applied science, 2, 880-899.

Elshafei, A. M., Othman, A. M., Elsayed, M. A., Ibrahim, G. E., Hassan, M. M., & Mehanna, N. S. (2022). A statistical strategy for optimizing the production of α-galactosidase by a newly isolated Aspergillus niger NRC114 and assessing its efficacy in improving soymilk properties. Journal genetic engineering & biotechnology, 20(1), 36. https://doi.org/10.1186/s43141-022-00315-6

Fernández-Leiro, R., Pereira-Rodríguez, A., Cerdán, M. E., Becerra, M., & Sanz-Aparicio, J. (2010). Structural analysis of Saccharomyces cerevisiae alpha-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases. The Journal of biological chemistry, 285(36), 28020-28033. https://doi.org/10.1074/jbc.M110.144584

Ferreira, J. G., Reis, A. P., Guimarães, V. M., Falkoski, D. L., Fialho, L. daS., & de Rezende, S. T. (2011). Purification and characterization of Aspergillus terreus α-galactosidases and their use for hydrolysis of soymilk oligosaccharides. Applied biochemistry and biotechnology, 164(7), 1111-1125. https://doi.org/10.1007/s12010-011-9198-y

Foucault, M., Watzlawick, H., Mattes, R., Haser, R., & Gouet, P. (2006). Crystallization and preliminary X-ray diffraction studies of two thermostable alpha-galactosidases from glycoside hydrolase family 36. Acta crystallographica. Section F, Structural biology and crystallization communications, 62(Pt 2), 100-103. https://doi.org/10.1107/S1744309105042582

Fredslund, F., Hachem, M. A., Larsen, R. J., Sørensen, P. G., Coutinho, P. M., Lo Leggio, L., & Svensson, B. (2011). Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. Journal of molecular biology, 412(3), 466-480. https://doi.org/10.1016/j.jmb.2011.07.057

Fujimoto, Z., Kaneko, S., Kim, W. D., Park, G. G., Momma, M., & Kobayashi, H. (2009). The tetramer structure of the glycoside hydrolase family 27 alpha-galactosidase I from Umbelopsis vinacea. Bioscience, biotechnology, and biochemistry, 73(10), 2360-2364. https://doi.org/10.1271/bbb.90604

Fushinobu, S., & Abou Hachem, M. (2021). Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes. Biochemical Society transactions, 49(2), 563-578. https://doi.org/10.1042/BST20200163

Gao, H. W., Zhuo, H. L., Zhang, X., Ji, S. P., Tan, Y. X., Li, S. B., Jia, Y. J., Xu, H., Wu, Q. F., Yun, Z. M., Luo, Q., & Gong, F. (2016). Evaluation of group A1B erythrocytes converted to type as group O: studies of markers of function and compatibility. Blood transfusion = Trasfusione del sangue, 14(2), 168-174.

Gloster, T. M., & Davies, G. J. (2010). Glycosidase inhibition: assessing mimicry of the transition state. Organic & biomolecular chemistry, 8(2), 305-320. https://doi.org/10.1039/B915870G

Golotin, V. A., Balabanova, L. A., Noskova, Y. A., Slepchenko, L. V., Bakunina, I. Y., Vorobieva, N. S., Terenteva, N. A., & Rasskazov, V. A. (2016). Optimization of cold-adapted alpha-galactosidase expression in Escherichia coli. Protein expression and purification, 123, 14-18. https://doi.org/10.1016/j.pep.2016.03.006

Golubev, A. M., Nagem, R. A., Brandão Neto, J. R., Neustroev, K. N., Eneyskaya, E. V., Kulminskaya, A. A., Shabalin, K. A., Savel'ev, A. N., & Polikarpov, I. (2004). Crystal structure of alpha-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. Journal of molecular biology, 339(2), 413-422. https://doi.org/10.1016/j.jmb.2004.03.062

Gote, M., Umalkar, H., Khan, I., & Khire, J. (2004). Thermostable α-galactosidase from Bacillus stearothermophilus (NCIM 5146) and its application in the removal of flatulence causing factors from soymilk. Process Biochemistry, 39,1723-1729. https://doi.org/10.1016/j.procbio.2003.07.008

Gu, H., Lu, M., Zhang, Z., Xu, J., Cao, W., & Miao, M. (2018). Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves. Journal of plant physiology, 224-225, 112-120. https://doi.org/10.1016/j.jplph.2018.03.012

Guce, A. I., Clark, N. E., Salgado, E. N., Ivanen, D. R., Kulminskaya, A. A., Brumer, H., & Garman, S. C. (2010). Catalytic mechanism of human alpha-galactosidase. The Journal of biological chemistry, 285(6), 3625-3632. https://doi.org/10.1074/jbc.M109.060145

Hilz, M. J., Arbustini, E., Dagna, L., Gasbarrini, A., Goizet, C., Lacombe, D., Liguori, R., Manna, R., Politei, J., Spada, M., & Burlina, A. (2018). Non-specific gastrointestinal features: Could it be Fabry disease?. Digestive and liver disease: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 50(5), 429-437. https://doi.org/10.1016/j.dld.2018.02.011

Hu, Y., Tian, G., Zhao, L., Wang, H., & Ng, T. B. (2017). A protease-resistant α-galactosidase from Pleurotus djamor with broad pH stability and good hydrolytic activity toward raffinose family oligosaccharides. International journal of biological macromolecules, 94(Pt A), 122-130. https://doi.org/10.1016/j.ijbiomac.2016.10.005

Huang, Y., Zhang, H., Ben, P., Duan, Y., Lu, M., Li, Z., & Cui, Z. (2018). Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. International journal of biological macromolecules, 108, 98-104. https://doi.org/10.1016/j.ijbiomac.2017.11.154

Kaneko, R., Kusakabe, I., Ida, E., & Murakami, K. (1991). Substrate specificity of alpha-galactosidase from Aspergillus niger 5-16. Agricultural and biological chemistry, 55(1), 109-115. https://doi.org/10.1271/bbb1961.55.109

Katrolia, P., Jia, H., Yan, Q., Song, S., Jiang, Z., & Xu, H. (2012). Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. Bioresource technology, 110, 578-586. https://doi.org/10.1016/j.biortech.2012.01.144

Katrolia, P., Rajashekhara, E., Yan, Q., & Jiang, Z. (2014). Biotechnological potential of microbial α-galactosidases. Critical reviews in biotechnology, 34(4), 307-317. https://doi.org/10.3109/07388551.2013.794124

Kotwal, S. M., Gote, M. M., Khan, M. I., & Khire, J. M. (1999). Production, purification and characterization of a constitutive intracellular alpha-galactosidase from the thermophilic fungus Humicola sp. Journal of industrial microbiology & biotechnology, 23(1), 661-667. https://doi.org/10.1038/sj.jim.2900680

Kreuzer, H. P., & Kauss, H. (1980). Role of α-galactosidase in osmotic regulation of Poterioochromonas malhamensis. Planta, 147(5), 435-438. https://doi.org/10.1007/BF00380184

Kurakake, M., Okumura, T., & Morimoto, Y. (2015). Synthesis of galactosyl glycerol from guar gum by transglycosylation of α-galactosidase from Aspergillus sp. MK14. Food chemistry, 172, 150-154. https://doi.org/10.1016/j.foodchem.2014.09.038

Lenny, L. L., Hurst, R., Goldstein, J., Benjamin, L. J., & Jones, R. L. (1991). Single-unit transfusions of RBC enzymatically converted from group B to group O to A and O normal volunteers. Blood, 77(6), 1383-1388. https://doi.org/10.1182/blood.V77.6.1383.1383

Li, Q., Ray, C. S., Callow, N. V., Loman, A. A., Islam, S. M. M., & Ju, L. K. (2020). Aspergillus niger production of pectinase and α-galactosidase for enzymatic soy processing. Enzyme and microbial technology, 134, 109476. https://doi.org/10.1016/j.enzmictec.2019.109476

Liu, C. Q., & He G. Q. (2012). Multiple α-galactosidases from Aspergillus foetidus ZU-G1: purification, characterization and application insoybean milk hydrolysis. European food research and technology, 234,743-751. https://doi.org/10.1007/s00217-012-1679-x

Liu, Q. P., Yuan, H., Bennett, E. P., Levery, S. B., Nudelman, E., Spence, J., Pietz, G., Saunders, K., White, T., Olsson, M. L., Henrissat, B., Sulzenbacher, G., & Clausen, H. (2008). Identification of a GH110 subfamily of alpha 1,3-galactosidases: novel enzymes for removal of the alpha 3Gal xenotransplantation antigen. The Journal of biological chemistry, 283(13), 8545-8554. https://doi.org/10.1074/jbc.M709020200

Liu, Y., Yang, J., Wang, K., Duan, F., & Lu, L. (2021). Carrier-free immobilization of α-galactosidase as nano-biocatalysts for synthesizing prebiotic α-galacto-oligosaccharides. Molecules (Basel, Switzerland), 26(5), 1248. https://doi.org/10.3390/molecules26051248

Malgas, S., van Dyk, S. J., & Pletschke, B. I. (2015). β-mannanase (Man26A) and α-galactosidase (Aga27A) synergism - a key factor for the hydrolysis of galactomannan substrates. Enzyme and microbial technology, 70, 1-8. https://doi.org/10.1016/j.enzmictec.2014.12.007

Martínez-Ocaña, J., Maravilla, P., & Olivo-Díaz, A. (2020). Interaction between human mucins and parasite glycoproteins: the role of lectins and glycosidases in colonization by intestinal protozoa. Revista do Instituto de Medicina Tropical de Sao Paulo, 62, e64. https://doi.org/10.1590/s1678-9946202062064

McGuire, B. E., Hettle, A. G., Vickers, C., King, D. T., Vocadlo, D. J., & Boraston, A. B. (2020). The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of α-1,3-galactosidic linkages in λ-carrageenan and blood group antigens. The Journal of biological chemistry, 295(52), 18426-18435. https://doi.org/10.1074/jbc.RA120.015776

Merceron, R., Foucault, M., Haser, R., Mattes, R., Watzlawick, H., & Gouet, P. (2012). The molecular mechanism of thermostable α-galactosidases AgaA and AgaB explained by x-ray crystallography and mutational studies. The Journal of biological chemistry, 287(47), 39642-39652. https://doi.org/10.1074/jbc.M112.394114

Mészáros, Z., Nekvasilová, P., Bojarová, P., Křen, V., & Slámová, K. (2021). Advanced glycosidases as ingenious biosynthetic instruments. Biotechnology advances, 49, 107733. https://doi.org/10.1016/j.biotechadv.2021.107733

Mitsutomi, M., & Ochtakara, A. (1987). A simplifield procedure for purification and crystallization of thermostable α-galactosidase from Pycnoporus cinnabarinus. Agricultural and biological chemistry, 48(12), 1153-3359. https://doi.org/10.1271/bbb1961.48.3153

Morales-Quintana, L., Faúndez, C., Herrera, R., Zavaleta, V., Ravanal, M. C., Eyzaguirre, J., & Moya-León, M. A. (2017). Biochemical and structural characterization of Penicillium purpurogenum α-D galactosidase: Binding of galactose to an alternative pocket may explain enzyme inhibition. Carbohydrate research, 448, 57-66. https://doi.org/10.1016/j.carres.2017.05.020

Nakai, H., Baumann, M. J., Petersen, B. O., Westphal, Y., Hachem, M. A., Dilokpimol, A., Duus, J. O., Schols, H. A., & Svensson, B. (2010). Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation. The FEBS journal, 277(17), 3538-3551. https://doi.org/10.1111/j.1742-4658.2010.07763.x

Nam, J., Choi, S. Y., Sung, S. C., Lim, H. G., Park, S. S., Kim, S. H., & Kim, Y. J. (2012). Changes of the structural and biomechanical properties of the bovine pericardium after the removal of α-Gal epitopes by decellularization and α-galactosidase treatment. The Korean journal of thoracic and cardiovascular surgery, 45(6), 380-389. https://doi.org/10.5090/kjtcs.2012.45.6.380

Naumov, D. G. (2004). Phylogenetic analysis of alpha-galactosidases of the GH27 family. Molekuliarnaia biologiia, 38(3), 463-476. https://doi.org/10.1023/B:MBIL.0000032210.97006.de

Neustroev, K. N., Golubev, A. M., Ibatullin, F. M., & Moseichuk, A. V. (1993). Microheterogenity in O-type sugar chains of carbohydrates secreted by Aspergillus awamori. Biochemistry and molecular biology international, 30(1), 107-113.

Oh, S. Y., Youn, S. Y., Park, M. S., Baek, N. I., & Ji, G. E. (2018). Synthesis of stachyobifiose using bifidobacterial α-galactosidase purified from recombinant Escherichia coli. Journal of agricultural and food chemistry, 66(5), 1184-1190. https://doi.org/10.1021/acs.jafc.7b04703

Okuyama, M., Matsunaga, K., Watanabe, K. I., Yamashita, K., Tagami, T., Kikuchi, A., Ma, M., Klahan, P., Mori, H., Yao, M., & Kimura, A. (2017). Efficient synthesis of α-galactosyl oligosaccharides using a mutant Bacteroides thetaiotaomicron retaining α-galactosidase (BtGH97b). The FEBS journal, 284(5), 766-783. https://doi.org/10.1111/febs.14018

Osman, N., McKenzie, I. F., Ostenried, K., Ioannou, Y. A., Desnick, R. J., & Sandrin, M. S. (1997). Combined transgenic expression of alpha-galactosidase and alpha1,2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galalpha(1,3)Gal. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14677-14682. https://doi.org/10.1073/pnas.94.26.14677

Othman, A. M., Elshafei, A. M., Elsayed, M. A., Ibrahim, G. E., Hassan, M. M., & Mehanna, N. S. (2023). Biochemical characterization and insights into the potency of the acidic Aspergillus niger NRC114 purified α-galactosidase in removing raffinose family oligosaccharides from soymilk yogurt. BMC biotechnology, 23(1), 3. https://doi.org/10.1186/s12896-023-00773-x

Phoeurk, C., Somana, J., Sornwatana, T., Udompaisarn, S., Traewachiwiphak, S., Sirichaiyakul, P., Phongsak, T., & Arthan, D. (2018). Three novel mutations in α-galactosidase gene involving in galactomannan degradation in endosperm of curd coconut. Phytochemistry, 156, 33-42. https://doi.org/10.1016/j.phytochem.2018.08.015

Rahfeld, P., & Withers, S. G. (2020). Toward universal donor blood: Enzymatic conversion of A and B to O type. The Journal of biological chemistry, 295(2), 325-334. https://doi.org/10.1074/jbc.REV119.008164

Rajan, S. S., Yang, X., Collart, F., Yip, V. L., Withers, S. G., Varrot, A., Thompson, J., Davies, G. J., & Anderson, W. F. (2004). Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure (London, England: 1993), 12(9), 1619-1629. https://doi.org/10.1016/j.str.2004.06.020

Rattanaprasert, M., van Pijkeren, J. P., Ramer-Tait, A. E., Quintero, M., Kok, C. R., Walter, J., & Hutkins, R. W. (2019). Genes involved in galactooligosaccharide metabolism in Lactobacillus reuteri and their ecological role in the gastrointestinal tract. Applied and environmental microbiology, 85(22), e01788-19. https://doi.org/10.1128/AEM.01788-19

Rezessy-Szabó, J. M., Nguyen, Q. D., Hoschke, A., Braet, C., Hajós, G., & Claeyssens, M. (2007). A novel thermostable alpha-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b: purification and characterization. Biochimica et biophysica acta, 1770(1), 55-62. https://doi.org/10.1016/j.bbagen.2006.06.022

Román-Carrasco, P., Hemmer, W., Cabezas-Cruz, A., Hodžić, A., de la Fuente, J., & Swoboda, I. (2021). The α-Gal syndrome and potential mechanisms. Frontiers in allergy, 2, 783279. https://doi.org/10.3389/falgy.2021.783279

Saad, R. R., & Fawzi, E. M. (2012). Purification and characterization of a thermostable α-galactosidase from Thielavia terrestris NRRL 8126 in solid state fermentation. Acta biologica Hungarica, 63(1), 138-150. https://doi.org/10.1556/ABiol.63.2012.1.11

Sasaki, Y., Uchimura, Y., Kitahara, K., & Fujita, K. (2021). Characterization of a GH36 α-D-galactosidase associated with assimilation of gum arabic in Bifidobacterium longum subsp. longum JCM7052. Journal of applied glycoscience, 68(2), 47-52. https://doi.org/10.5458/jag.jag.JAG-2021_0004

Savel'ev, A. N., Eneyskaya, E. V., Isaeva-Ivanova, L. S., Shabalin, K. A., Golubev, A. M., & Neustroev, K. N. (1997). The carbohydrate moiety of alpha-galactosidase from Trichoderma reesei. Glycoconjugate journal, 14(8), 897-905. https://doi.org/10.1023/A:1018510626305

Simerská, P., Monti, D., Cechová, I., Pelantová, H., Macková, M., Bezouska, K., Riva, S., & Kren, V. (2007). Induction and characterization of an unusual alpha-D-galactosidase from Talaromyces flavus. Journal of biotechnology, 128(1), 61-71. https://doi.org/10.1016/j.jbiotec.2006.09.006

Simila, J., Gernig, A., Murray, P., Fernandes, S., & Tuohy, M. G. (2010). Cloning and expression of a thermostable alpha-galactosidase from the thermophilic fungus Talaromyces emersonii in the methylotrophic yeast Pichia pastoris. Journal of microbiology and biotechnology, 20(12), 1653-1663.

Song, Y., Sun, W., Fan, Y., Xue, Y., Liu, D., Ma, C., Liu, W., Mosher, W., Luo, X., Li, Z., Ma, W., & Zhang, T. (2018). Galactomannan degrading enzymes from the mannan utilization gene cluster of alkaliphilic Bacillus sp. N16-5 and their synergy on galactomannan degradation. Journal of agricultural and food chemistry, 66(42), 11055-11063. https://doi.org/10.1021/acs.jafc.8b03878

Stratilová, B., Klaudiny, J., Řehulka, P., Stratilová, E., Mészárosová, C., Garajová, S., Pavlatovská, B., Řehulková, H., Kozmon, S., Šesták, S., Firáková, Z., & Vadkertiová, R. (2018). Characterization of a long-chain α-galactosidase from Papiliotrema flavescens. World journal of microbiology & biotechnology, 34(2), 19. https://doi.org/10.1007/s11274-017-2403-6

Tsuboi, K., & Yamamoto, H. (2012). Clinical observation of patients with Fabry disease after switching from agalsidase beta (Fabrazyme) to agalsidase alfa (Replagal). Genetics in medicine: official journal of the American College of Medical Genetics, 14(9), 779-786. https://doi.org/10.1038/gim.2012.39

Varbanets, L. D., Malanchuk, V. M., Buglova, T. T., & Kuhlmann, R. A. (2001). Penicillium sp. 23 α-galactosidase: purification and substrate specificity. Carbohydrate Polymers, 44, 357-363. https://doi.org/10.1016/S0144-8617(00)00252-6

Viana, P. A., de Rezende, S. T., Passos, F. M., Oliveira, J. S., Teixeira, K. N., Santos, A. M., Bemquerer, M. P., Rosa, J. C., Santoro, M. M., & Guimarães, V. M. (2009). Debaryomyces hansenii UFV-1 intracellular alpha-galactosidase characterization and comparative studies with the extracellular enzyme. Journal of agricultural and food chemistry, 57(6), 2515-2522. https://doi.org/10.1021/jf8030919

Wang, J., Cao, X., Chen, W., Xu, J., & Wu, B. (2021). Identification and characterization of a thermostable GH36 α-galactosidase from Anoxybacillus vitaminiphilus WMF1 and its application in synthesizing isofloridoside by reverse hydrolysis. International journal of molecular sciences, 22(19), 10778. https://doi.org/10.3390/ijms221910778

Wang, J., Yang, X., Yang, Y., Liu, Y., Piao, X., & Cao, Y. (2020). Characterization of a protease-resistant α-galactosidase from Aspergillus oryzae YZ1 and its application in hydrolysis of raffinose family oligosaccharides from soymilk. International journal of biological macromolecules, 158, 708-720. https://doi.org/10.1016/j.ijbiomac.2020.04.256

Weignerovа, L., Hunkova, Z., Kuzma, M., & Kren, V. (2001). Enzymatic synthesis of three pNP-α-galactobiopyranosides: application of the library of fungal α-galactosidases. Journal of molecular catalysis B: Enzymatic, 11, 219-224. https://doi.org/10.1016/S1381-1177(00)00076-X

Xiao, M., Tanaka, K., Qian, X. M., Yamamoto, K., & Kumagai, H. (2000). High yield production and characterization of α-galactosidase from Bifidobacterium breve grown on raffinose. Biotechnology Letters, 22, 747-751. https://doi.org/10.1023/A:1005626228056

Yakimova, B., Tchorbanov, B., & Stoineva, I. (2017). Alpha-galactosidase and invertase from Penicillium chrysogenum sp. 23: purification, characteristics and hydrolysis of raffinose. Bulgarian chemical communications, 49,101-106.

Yang, D., Tian, G., Du, F., Zhao, Y., Zhao, L., Wang, H., & Ng, T. B. (2015). A fungal alpha-galactosidase from Pseudobalsamia microspora capable of degrading raffinose family oligosaccharides. Applied biochemistry and biotechnology, 176(8), 2157-2169. https://doi.org/10.1007/s12010-015-1705-0

Ye, F., Geng, X. R., Xu, L. J., Chang, M. C., Feng, C. P., & Meng, J. L. (2018). Purification and characterization of a novel protease-resistant GH27 α-galactosidase from Hericium erinaceus. International journal of biological macromolecules, 120(Pt B), 2165-2174. https://doi.org/10.1016/j.ijbiomac.2018.09.021

Yi, D., Bayer, T., Badenhorst, C. P. S., Wu, S., Doerr, M., Höhne, M., & Bornscheuer, U. T. (2021). Recent trends in biocatalysis. Chemical Society reviews, 50(14), 8003-8049. https://doi.org/10.1039/D0CS01575J

Zapater, I. G., Ullah, A. H., & Wodzinski, R. J. (1990). Extracellular alpha galactosidase (E.C. 3.2.1.22) from Aspergillus ficuum NRRL 3135 purification and characterization. Preparative biochemistry, 20(3-4), 263-296. https://doi.org/10.1080/00327489008050201

Zechel, D. L., & Withers, S. G. (2000). Glycosidase mechanisms: anatomy of a finely tuned catalyst. Accounts of chemical research, 33(1), 11-18. https://doi.org/10.1021/ar970172

Zeyland, J., Gawrońska, B., Juzwa, W., Jura, J., Nowak, A., Słomski, R., Smorąg, Z., Szalata, M., Woźniak, A., & Lipiński, D. (2013). Transgenic pigs designed to express human α-galactosidase to avoid humoral xenograft rejection. Journal of applied genetics, 54(3), 293-303. https://doi.org/10.1007/s13353-013-0156-y

Zhao, T., Corum III, J., Mullen, J., Meeley, R., Helentjaris, T., Martin, D., & Downie, B. (2006). An alkaline α-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Science Research, 16(2), 107-121. https://doi.org/10.1079/SSR2006243

Zhou, J., Lu, Q., Zhang, R., Wang, Y., Wu, Q., Li, J., Tang, X., Xu, B., Ding, J., & Huang, Z. (2016). Characterization of two glycoside hydrolase family 36 α-galactosidases: novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity. Food chemistry, 194, 156-166. https://doi.org/10.1016/j.foodchem.2015.08.015

Zou, Y., Liu, M., Lai, Y., Liu, X., Li, X., Li, Y., Tang, Q., & Xu, W. (2023). The glycoside hydrolase gene family profile and microbial function of Debaryomyces hansenii Y4 during South-road dark tea fermentation. Frontiers in microbiology, 14, 1229251. https://doi.org/10.3389/fmicb.2023.1229251

Downloads

Published

2024-04-28

How to Cite

Borzova, N., & Varbanets, L. (2024). Distribution, Properties, and Practical Significance of α-Galactosidase. Mikrobiolohichnyi Zhurnal, 86(2), 90-113. https://doi.org/10.15407/microbiolj86.02.090

Received

2023-09-05

Accepted

2023-10-13

Published

2024-04-28