A Novel Trichothecene Metabolite from Myrothecium cinctum 910 and its Biological Activity


  • K.S. Tsyhanenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine https://orcid.org/0000-0001-6167-7830
  • A.K. Pavlychenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • O.V. Andrienko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • Ya.I. Savchuk Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine https://orcid.org/0000-0001-9872-8865




Myrothecium cinctum, Striaticonidium cinctum, mycotoxins, trichothecenes, biological activity


Fungi of the Myrothecium genus are well-known producers of macrocyclic trichothecenes, characterized by the acute toxic effect on warm-blooded organisms and fungicidal action against a wide range of fungi. At the same time, as established by us earlier, M. cinctum (current name Striaticonidium cinctum) 910 shows a wide spectrum of antibacterial activity: along with antifungal activity against mycelial, yeast-like and phytopathogenic test-cultures it strongly inhibited the growth of gram-positive test-strains and to lesser extend – the growth of gram-negative and phytopathogenic bacteria. This strain also revealed significant phytotoxic potential suppressing the growth of green algae Chlorella strains. The aim of the work was to isolate, to purify and to obtain in crystalline form the biological active metabolites of M. cinctum 910 and to study their physicochemical characteristics and biological activity. Methods. To obtain biologically active metabolites in the purified crystalline form, the extraction followed by separation by column chromatography and recrystallization was used; physicochemical methods and microbiological tests were used for characterization of their properties. Results. Three substances which showed the wide spectrum of biological activity to indicator test-cultures were obtained in crystalline form: preparation МС910 with high antibiotic activity and preparations from fractions 8/2 and 9 with high antifungal and phytotoxic activities. Taking into account the data of spectroscopy in the UV-range of spectrum, of spectrums of antibiotic activity and of qualitative reaction with 4-(4-nitrobenzyl)pyridine, it can be concluded that active fractions  8/2 and  9 contain macrocyclic trichothecenes whereas the metabolite МС910 (which is proved by data of IR-spectroscopy) belongs to simple trichothecenes – substances like to macrocyclic trichothecenes but without macrocyclic fragment in their structure. Conclusions. Antibiotic properties of M. cinctum 910 are due to the complex of biological active metabolites with different biological and physicochemical properties. In view on the biological activity of MC910, it can be argued that it has atypical for trichothecenes, including macrocyclc trichothecenes, antibacterial properties as well as it is non-toxic and does not reveal dermatocidal activity in studied concentrations. Therefore, we assume that MC910 is new, not described earlier metabolite of trichothecene nature, which needs further studies. At the same time, active metabolites from fractions 8/2 and 9 are represented by macrocyclic trichothecenes, which is also indicated by the spectra of their biological activity.


Download data is not yet available.


Abbas, H. K., Tak, H., Boyette, C. D., Shier, W. T., & Jarvis, B. B. (2001). Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria. Phytochemistry, 58(2), 269–276. https://doi.org/10.1016/S0031-9422(01)00214-X

Anderson, K. I., & Hallett, S. G. (2004). Herbicidal spectrum and activity of Myrothecium verrucaria. Weed Science, 52(4), 623–627. https://doi.org/10.1614/WS-03-101R1

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Bamburg, J. R. (1983). Biological and biochemical actions of trichothecene. Progress in Molecular and Subcellular Biology, 8(1), 41–110. https://doi.org/10.1007/978-3-642-69228-4_3

Bean, G. A., Kuti, J. O., & Ng, T.J. (1988). Trichothecenes and their possible role in pathogenicity of Myrothecium roridum. JSM Mycotoxins, Suppl 1, 204–208. https://doi.org/10.2520/myco1975.1988.1Supplement_204

Bilai, V. Y. (Ed.). (1982). Methods of experimental mycology: handbook. Naukova Dumka.

Boyette, C. D., Walker, H. L., & Abbas, H. K. (2007). Biological control of kudzu (Pueraria lobata) with an isolate of Myrothecium verrucaria. Biocontrol Science and Technology, 12, 75–82. https://doi.org/10.1080/09583150120093031

Brasel, T. L., Douglas, D. R., Wilson, S. C., & Straus, D. C. (2005). Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia. Applied and Environmental Microbiology, 71(1), 114–122. https://doi.org/10.1128/AEM.71.1.114-122.2005

Cheronis, N. D. (1960). Micro and semimicro methods of organic chemistry. Foreign Literature Publishing House.

Desjardins, A. E. (2009). From yellow rain to green wheat: 25 years of trichothecene biosynthesis research. Journal of Agricultural and Food Chemistry, 57(11), 4478–4484. https://doi.org/10.1021/jf9003847

Dewanjee, S., Gangopadhyay, M., Bhattabharya, N., Khanra, R., & Dua, T. K. (2015). Bioautography and its scope in the field of natural product chemistry. Journal of Pharmaceutical Analysis, 5(2), 75–84. https://doi.org/10.1016/j.jpha.2014.06.002

Gülay, T., & Grossmann, F. (1994). Antagonistic activity of five Myrothecium species against fungi and bacteria in vitro. Phytopathology, 140(2), 97–113. https://doi.org/10.1111/j.1439-0434.1994.tb00182.x

Härri, E., Loeffler, W., Sigg, H. P., Stähelin, H., Stoll, Ch., Tamm, Ch., & Wiesinger, D. (1962). Über die Verrucarine und Roridine, eine Gruppe von cytostatisch hochwirksamen Antibiotica aus Myrothecium-Arten. Helvetica Chimica Acta, 45(3), 839–853. https://doi.org/10.1002/hlca.19620450314

Janik, E., Ceremuga, M., Saluk-Bijak, J., & Bijak, M. (2019). Biological toxins as the potential tools for bioterrorism. International Journal of Molecular Sciences, 20, 1181. https://doi.org/10.3390/ijms20051181

Jarvis, B. B., Lee, Y. W., Cömezoglu, S. N., & Yatawara, C. S. (1986). Trichothecenes produced by Stachybotrys atra from Eastern Europe. Applied and Environmental Microbiology, 51(5), 915–928. https://doi.org/10.1128/aem.51.5.915-918.1986

Jarvis, B. B., Stahly, G. P., Pavanasasivam, G., Midiwo, J. O., De Silva, T., Holmlund, C. E., Mazzola, E. P., & Geoghegan, R. F., Jr. (1982). Isolation and characterization of the trichoverroids and new roridins and verrucarins. Journal of Organic Chemistry, 47(11), 1117–1124. https://doi.org/10.1021/jo00345a044

Jarvis, B. B., & Vrudhula, V. M. (1983). New trichoverroids from Myrothecium verrucaria: 16-hydroxytrichodermadienediols. The Journal of Antibiotics, 36(2), 459–462. https://doi.org/10.7164/antibiotics.36.459

Khalid, M. M., & Sudhir, Ch. (1989). A modified medium for antibiotic production by Aspergillus spp. antagonistic to citrus cancer pathogen. National Academy Science Letters, 12(4), 103–106.

Kobayashi, A., Nakae, Y., Kawaski, T., & Kawazu, K. (1989). Fungal trichothecenes which promote callus initiation from the alfalfa cotyledon. Agricultural and Biological Chemistry, 53(3), 585–589. https://doi.org/10.1080/00021369.1989.10869294

Kobayashi, M., Kanasaki, R., Ezaki, M., Sakamoto, K., Takase, S., Fujie, A., Hino, M., & Hori, Y. (2004). FR227244, a novel antifungal antibiotic from Myrothecium cinctum. No. 002. Part I. Taxonomy, fermentation, isolation and physico-chemical properties. The Journal of Antibiotics, 57(12), 780–787. https://doi.org/10.7164/antibiotics.57.780

Kobayashi, M., Sato, I., Abe, F., Nitta, K., Hashimoto, M., Fujie, A., Hino, M., & Hori, Y. (2004). FR227244, a novel antifungal antibiotic from Myrothecium cinctum No. 002. Part II. Biological properties and mode of action. The Journal of Antibiotics, 57(12), 788–796. https://doi.org/10.7164/antibiotics.57.788

Lazurevskiy, G. V., Terentieva, I. V., & Shamshurin, A. A. (1966). Practicum on the natural compounds chemistry. Vysshaya Shkola.

Lee, H. B., & Kim, J. K. (2008). Evaluation of a fungal strain, Myrothecium roridum F0252, as a bioherbicide agent. The Plant Pathology Journal, 24(4), 453–460. https://doi.org/10.5423/PPJ.2008.24.4.453

Li, T. X., Yuan, M., Zhao, G. L., Yu, G. F., Xiong, Y. M., Jia, X. W., & Xu, C. P. (2020). Cytotoxic macrocyclic trichothecenes from Myrothecium roridum. Phytochemistry Letters, 38, 1–5. https://doi.org/10.1016/j.phytol.2020.04.003

Li, T. X., Xiong, Y. M., Chen, X., Yang, Y. N., Wang, Y., Jia, X. W., Yang, X. P., Tan, L. L., & Xu, C. P. (2019). Antifungal macrocyclic trichothecenes from the insect-associated fungus Myrothecium roridum. Journal of Agricultural and Food Chemistry, 67(47), 13033–13039. https://doi.org/10.1021/acs.jafc.9b04507

Liu, J. Y., Huang, L. L., Ye, Y. H., Zou, W. X., Guo, Z. J., & Tan, R. X. (2006). Antifungal and new metabolites of Myrothecium sp. Z16, a fungus associated with white croaker Argyrosomus argentatus. Journal of Applied Microbiology, 100(1), 195–202. https://doi.org/10.1111/j.1365-2672.2005.02760.x

Lombard, L., Houbraken, J., Decock, C., Samson, R. A., Meijer, M., Réblová, M., Groenewald, J. Z., & Crous P. W. (2016). Generic hyper-diversity in Stachybotriaceae. Persoonia, 36, 156–246. https://doi.org/10.3767/003158516X691582

Lurie, A. A. (1978). Materials for Chromatography. Khimiya.

el-Maghraby, O. M., Bean, A., Jarvis, B. B., & Aboul-Nasr, M. B. (1991). Macrocyclic trichothecenes produced by Stachybotrys isolated from Egypt and eastern Europe. Mycopathologia, 113(2), 109–115. https://doi.org/10.1007/BF00442419

Majewski, W. A., Pfanstiel, J. F., Plusquellic, D. F., & Pratt, D. W. (1995). High resolution optical spectroscopy in the UV. Laser Techniques in Chemistry, 23, 101–48.

Mannapova, R. T. (2018). Microbiology and micology. Especially dangerous infectious diseases, mycoses, and mycotoxicosis. Prospect.

Marston, A. (2011). Thin-layer chromatography with biological detection in phytochemistry. Journal of Chromatography A, 1218(19), 2676–83. https://doi.org/10.1016/j.chroma.2010.12.068

Murakami, Y., Okuda, T., & Shindo, K. (2001). Roridin L, M and verrucarin M, new macrocyclic trichothecene group antitumor antibiotics. The Journal of Antibiotics, 54(11), 980–983. https://doi.org/10.7164/antibiotics.54.980

Okunowo, W. O., Gbenle, G. O., Osuntoki, A. A., Adekunle, A. A., & Ojokuku, S. A. (2009). Production of cellulolytic and xylanolytic enzymes by a phytopathogenic Myrothecium roridum and some avirulent fungal isolates from water hyacinth. African Journal of Biotechnology, 9(7), 168–176. https://doi.org/10.5897/AJB09.1598

Savchuk, Ya. I., Tsyganenko, K. S., & Andrienko, O. V. (2019). Physicochemical and toxigenic characteristics of the new metabolites from Ulocladium consortiale 960. Microbiological Journal, 81(1), 84–93. https://doi.org/10.15407/microbiolj81.01.084

Savchuk, Ya. I., Tsyhanenko, K. S., Andrienko, O. V., & Kurchenko, I. M. (2021). The new biologically active metabolites from Aspergillus niveus 2411. Microbiological Journal, 83(4), 74–85. https://doi.org/10.15407/microbiolj83.04.074

Savchuk, Ya. I., Tsyganenko, K. S., & Zaichenko, O. M. (2013). Antibiotic activity of some fungi. Microbiological Journal, 75(5), 52–61. http://nbuv.gov.ua/UJRN/MicroBiol_2013_75_5_9

Savchuk, Ya. I., Zaichenko, A. M., & Tsyganenko, K. S. (2012). Biological activity of Penicillium sp. 10-51 exometabolites. Microbiological Journal, 74(4), 52–56. http://nbuv.gov.ua/UJRN/MicroBiol_2012_74_4_8

Takitani, S., Asabe, Y., Kato, T., Suzuki, M., & Ueno, Y. (1979). Spectrodensitometric determination of trichothecene mycotoxins with 4-(p-nitrobenzyl)pyridine on silica gel thin-layer chromatograms. Journal of Chromatography, 172(3), 335–342. https://doi.org/10.1016/S0021-9673(00)90970-1

Tamm, Ch. (1977). Chemistry and biosynthesis of trichothecenes. In J. V. Rodricks, C. W. Hesseltine, & M. A. Meheman (Eds.), Mycotoxins in Human and Animal Health (pp. 209–228). Pathotox.

Tutelian, V. A., & Kravchenko L. V. (1985). Mycotoxins (medical and biological aspects). Meditsyna.

Ueno, Y. (1983). Trichothecenes – chemical, biological and toxicological aspects. Developments in Food Science, 4(1), 20–38.

Ueno, Y. (1985). The toxicology of mycotoxins. CRC Critical Reviews in Toxicology, 14(2), 99–132. https://doi.org/10.3109/10408448509089851

Vinogradov, A. P. (Ed.). (1974). Analytical chemistry of phosphorus. Nauka.

Voskresenskiy, P. I. (1964). Laboratory Technique. Khimiya.

Walker, H. L., & Tilley, A. M. (1997). Evaluation of an isolate of Myrothecium verrucaria from Sicklepod (Senna obtusifolia) as a potential mycoherbicide agent. Biological Control, 10(2), 104–112. https://doi.org/10.1006/bcon.1997.0559

Zaichenko, A. M., Andrienko, E. V., & Tsyganenko, K. S. (2008). Macrocyclic trichothecene mycotoxins. Naukova Dumka.

Zaichenko, A. M., Andrienko, E. V., & Tsyganenko, K. S. (2008). Macrocyclic trichothecene mycotoxins: toxicity for warm-blooded animals. Modern Problems of Toxicology, 4, 32–37. http://medved.kiev.ua/web_journals/arhiv/toxicology/2008/4_2008/str32.pdf

Zaichenko, A. M., Nagorna, S. S., Andrienko, E. V., & Tsyganenko K. S. (2009). Study of specificity of fungistatic effect of trichothecene mycotoxins. Microbiological Journal, 71(2), 57–61.

Zaichenko, A. M., Rubezhnyak, I. G., & Kobzystaya O. P. (2001). Macrocyclic trichothecene mycotoxins: producers, distribution, determination, physiology of toxicogenesis, toxigenic potential. Modern Problems of Toxicology, 2, 56–62. http://medved.kiev.ua/arhiv_mg/st_2001/012_12en.htm

Zaichenko, A. M., Sobolev, V. S., Kirillova, L. M., & Rubezhniak, I. G. (1994). Toxigenic potential of Dendrodochium and Myrothecium species. Microbiological Journal, 56(1), 59–60.

Zaichenko, A. M., Tsyganenko, K. S., Andrienko, E. V., & Savchuk, Ya. I. (2013). Characteristics of toxigenic properties of Myrothecium cinctum (Corda) Sacc., 1886 and Myrothecium commune Pidopl., 1969. Microbiological Journal, 75(6), 41–45. http://nbuv.gov.ua/UJRN/MicroBiol_2013_75_6_8

Zhu, M., Cen, Y., Ye, W., Le, S., & Zhang, W. (2020). Recent advances on macrocyclic trichothecenes, their bioactivities and biosynthetic pathway. Toxins, 12(6), 417. https://doi.org/10.3390/toxins12060417

Zou, X., Niu, S., Ren, J., Li, E., Liu, X., & Che, Y. (2011). Verrucamides A-D, antibacterial cyclopeptides from Myrothecium verrucaria. Journal of Natural Products, 74(5), 1111–1116. https://doi.org/10.1021/np200050r




How to Cite

Tsyhanenko, K., Pavlychenko, A., Andrienko, O., & Savchuk, Y. (2024). A Novel Trichothecene Metabolite from Myrothecium cinctum 910 and its Biological Activity. Mikrobiolohichnyi Zhurnal, 86(2), 10-23. https://doi.org/10.15407/microbiolj86.02.010
Received 2023-09-05
Accepted 2023-11-03
Published 2024-04-28