IL-11 Suppresses VEGFR2 Expression and Hampers Endothelial Cell’s Wound Healing
DOI:
https://doi.org/10.15407/microbiolj86.04.086Keywords:
endothelial cell, interleukin-6, interleukin-11, cytomegalovirus, wound healing, VEGFR2Abstract
Endothelial cells (EC) line the lumen of all blood vessels and are crucial for vascular integrity, haemeostasis, and inflammation. EC are also targets for infections such as human cytomegalovirus (hCMV), which can induce vascular injury and release of various cytokines including the closely related interleukin (IL) - 11 and IL-6. Objective. To assess the effect of IL-11 and IL-6 on wound healing by EC. Methods. We report a follow-up study of our previous work on IL-11 and IL-6 responses to hCMV where the EC’s wound healing capacity and expression of relevant gene transcripts in EC treated with IL-11 or IL-6 are assessed. Results. Treatment with IL-11, but not with IL-6, hampered the wound healing capacity, and this effect may be due to suppression of VEGF signaling caused by suppression of VEGFR2. The VEGFA levels remained unaltered. Conclusions. IL-11 hampers the regenerating wound healing capacity of EC, and this may be due to the reduced expression of VEGFR2.
Downloads
References
Alarifi, S., Alkahtani, S., Al-Qahtani, A. A., Stournaras, C., & Sourvinos, G. (2020). Induction of interleukin-11 mediated by RhoA GTPase during human cytomegalovirus lytic infection. Cellular signalling, 70, 109599. https://doi.org/10.1016/j.cellsig.2020.109599
Clement, M., & Humphreys, I. R. (2019). Cytokine-Mediated Induction and Regulation of Tissue Damage During Cytomegalovirus Infection. Frontiers in immunology, 10, 78. https://doi.org/10.3389/fimmu.2019.00078
Cooke, B. M., Usami, S., Perry, I., & Nash, G. B. (1993). A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvascular research, 45(1), 33–45. https://doi.org/10.1006/mvre.1993.1004
Gustafsson, R. K. L., Jeffery, H. C., Yaiw, K. C., Wilhelmi, V., Kostopoulou, O. N., Davoudi, B., Rahbar, A., Benard, M., Renné, T., Söderberg-Nauclér, C., & Butler, L. M. (2015). Direct infection of primary endothelial cells with human cytomegalovirus prevents angiogenesis and migration. The Journal of general virology, 96(12), 3598–3612. https://doi.org/10.1099/jgv.0.000301
Gustafsson, K. L. R., Renné, T., Söderberg-Naucler, C., & Butler, L. M. (2018). Human cytomegalovirus replication induces endothelial cell interleukin-11. Cytokine, 111, 563–566. https://doi.org/10.1016/j.cyto.2018.05.018
Jarvis, M. A., & Nelson, J. A. (2007). Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. Journal of virology, 81(5), 2095–2101. https://doi.org/10.1128/JVI.01422-06
Jeffery, H. C., Söderberg-Naucler, C., & Butler, L. M. (2013). Human cytomegalovirus induces a biphasic inflammatory response in primary endothelial cells. Journal of virology, 87(11), 6530–6535. https://doi.org/10.1128/JVI.00265-13
Mahboubi, K., Li, F., Plescia, J., Kirkiles-Smith, N. C., Mesri, M., Du, Y., Carroll, J. M., Elias, J. A., Altieri, D. C., & Pober, J. S. (2001). Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Laboratory investigation; a journal of technical methods and pathology, 81(3), 327–334. https://doi.org/10.1038/labinvest.3780241
Nishina, T., Komazawa-Sakon, S., Yanaka, S., Piao, X., Zheng, D. M., Piao, J. H., Kojima, Y., Yamashina, S., Sano, E., Putoczki, T., Doi, T., Ueno, T., Ezaki, J., Ushio, H., Ernst, M., Tsumoto, K., Okumura, K., & Nakano, H. (2012). Interleukin-11 links oxidative stress and compensatory proliferation. Science signaling, 5(207), 5. https://doi.org/10.1126/scisignal.2002056
Nishina, T., Deguchi, Y., Kawauchi, M., Xiyu, C., Yamazaki, S., Mikami, T., & Nakano, H. (2023). Interleukin 11 confers resistance to dextran sulfate sodium-induced colitis in mice. Science, 26(2), 105934. https://doi.org/10.1016/j.isci.2023.105934
Pate, M., Damarla, V., Chi, D. S., Negi, S., & Krishnaswamy, G. (2010). Endothelial cell biology: role in the inflammatory response. Advances in clinical chemistry, 52, 109–130. https://doi.org/10.1016/S0065-2423(10)52004-3
Putoczki, T., & Ernst, M. (2010). More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. Journal of leukocyte biology, 88(6), 1109–1117. https://doi.org/10.1189/jlb.0410226
Ribatti, D., Tamma, R., & Annese, T. (2021). The role of vascular niche and endothelial cells in organogenesis and regeneration. Experimental cell research, 398(1), 112398. https://doi.org/10.1016/j.yexcr.2020.112398
Santos, S. C., Miguel, C., Domingues, I., Calado, A., Zhu, Z., Wu, Y., & Dias, S. (2007). VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing. Experimental cell research, 313(8), 1561–1574. https://doi.org/10.1016/j.yexcr.2007.02.020
Styles, J. N., Converse, R. R., Griffin, S. M., Wade, T. J., Klein, E., Nylander-French, L. A., Stewart, J. R., Sams, E., Hudgens, E., & Egorov, A. I. (2020). Human Cytomegalovirus Infections Are Associated With Elevated Biomarkers of Vascular Injury. Frontiers in cellular and infection microbiology, 10, 334. https://doi.org/10.3389/fcimb.2020.00334
Zhang, Y., Li, Y., He, A., Wang, J., Zhang, P., Lei, B., Huang, Z., Zhang, L., Zhao, W., & Ma, X. (2023). Efficacy of recombinant human interleukin-11 in preventing and treating oral mucositis after chemotherapy for patients with acute leukemia. BMC oral health, 23(1), 476. https://doi.org/10.1186/s12903-023-03118-4
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mikrobiolohichnyi Zhurnal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.