Modification of Bacillus sp. IMV B-7883 Elastase Activity by the Hetero-Metallic Carboxylatogermanates/Stannates

Authors

  • O.V. Gudzenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • L.D. Varbanets Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • I.I. Seifullina Odesa National University I.I. Mechnikov, 2 Dvoryanska Str., Odesa, 65082, Ukraine
  • O.E. Martsynko Odesa National University I.I. Mechnikov, 2 Dvoryanska Str., Odesa, 65082, Ukraine
  • O.V. Buchko Odesa National University I.I. Mechnikov, 2 Dvoryanska Str., Odesa, 65082, Ukraine
  • E.V. Afanasenko Odesa National University I.I. Mechnikov, 2 Dvoryanska Str., Odesa, 65082, Ukraine
  • О.A. Chebanenko LLC "INSPECTORAT UKRAINE", 10 Bunin Str., Odesa, 65000, Ukraine

DOI:

https://doi.org/10.15407/microbiolj86.04.033

Keywords:

Bacillus sp. IMV B-7883, elastase activity, hetero-metallic carboxylatogermanates/stannates complexes

Abstract

In recent years, some researchers have found that although many Gram-negative and Gram-positive bacteria secrete elastase, the bacterial forms of elastase have either a low activity or harmful effects. Therefore, further research is needed in isolating and screening microorganisms that produce a high level of elastase activity. Previously we selected strain Bacillus sp. IMV B-7883, which exhibits fairly high elastase activity. To increase its activity, we chose one of the well-known approaches, in particular, the use of a number of coordination compounds capable to influence elastase activity. In this regard, the purpose of this work was to study the effect of such coordination compounds as hetero-metallic carboxylatogermanates/stannates on the elastase activity of Bacillus sp. IMV B-7883. Methods. The object of the investigation was the strain of Bacillus sp., deposited in the Ukrainian Collection of Microorganisms under the number IMV B-7883, isolated from soil. The culture was grown under conditions of submerged cultivation at 28 °С, with a mixing speed of the nutrient medium of 244 rpm for three to six days (72–144 hours). We used an enzyme purified from the supernatant of the culture liquid by precipitation with 90% ammonium sulfate, with further fractionation on neutral and charged carriers. Elastase activity was determined colorimetrically by the intensity of the color of the solution upon enzymatic hydrolysis of elastin stained with Congo red. As modifiers of enzyme activity, hetero-metallic carboxylatogermanates/stannates were used. Results. Of the 15 studied in this work coordination compounds presented by hetero-metallic carboxylatogermanates/stannates, only 1 [Ba(H2O)6][Ge2(OH)2(C6H8O7)2]·nH2O, n=2 and 3 [Ni (H2O)6][Ge2(OH)2(C6H8O7)2]·nH2O, n=4, depending on the concentration used and incubation time, increase the elastase activity by only 3–5%. All other compounds have an inhibitory effect. Conclusions. Obtained data on the inhibitory effect of hetero-metallic carboxylatogermanates/stannates on the elastase activity of Bacillus sp. IMV B-7883 provide new information which may help in solving the issue of the mechanism of interaction between enzymes and complex chemical molecules.

Downloads

Download data is not yet available.

References

Afanasenko, E., Seifullina, I., Martsinko, E., Dyakonenko, V., Shishkina, S., Gudzenko, O., & Varbanets, L. (2023). Supramolecular organization and enzyme-effector properties of double coordination salts with malatostannate/germanate(IV) anions and Fe(II), Co(II), Ni(II), Cu(II) 1,10-phenanthroline cations. Journal of Molecular Structure, 1271, 133996. https://doi.org/10.1016/j.molstruc.2022.133996

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce, & Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature reviews. Drug discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z

Chen, Q., Ruan, H., Zhang, H., Ni, H., & He, G. (2007). Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology. Journal of Zhejiang University SCIENCE B, 8(11), 845–852. https://doi.org/10.1631/jzus.2007.B0845

Gudzenko, О. V., Varbanets, L. D., & Seifullina, І. I. (2020). The influence of coordinative tartrate and malatogermanate compounds on the activity of ?-L-rhamnosidase preparations from Penicillium tardum, Eupenicillium erubescens and Cryptococcus albidus. The Ukrainian Biochemical Journal, 92(4), 85–95. https://doi.org/10.15407/ubj92.04.085

Gudzenko, O. V., Borzova, N. V., Varbanets, L. D., Seifullina, I. I., Martsinko, E. E., Buchko, O. V., & Pesaroglo, А. G. (2023a). Influence of New Types of Biscitratogermanates on Penicillium restrictum α-L-Rhamnosidase. Mikrobiolohichnyi Zhurnal, 85(3), 3–11. https://doi.org/10.15407/microbiolj85.03.003

Gudzenko, O. V., Borzova, N. V., Varbanets, L. D., Seifullina, I. I., Martsinko, О. E., & Chebanenko, О. A. (2023b). Germanium (IV) Complexes with Gluconic Acid as Effectors of Penicillium tardum and Eupenicillium erubescens α-L-Rhamnosidases. Mikrobiolohichnyi Zhurnal, 85(4), 58–65. https://doi.org/10.15407/microbiolj85.04.058

Gudzenko, O. V., Borzova, N. V., Varbanets, L. D., Seifullina, I. I., Martsinko, O. E., & Afanasenko, E. V. (2023c). The influence of coordination compounds with malatogermanate/stannate anions and 1,10-phenanthroline cations of 3d metals on α-L-rhamnosidase activity of Penicillium tardum, Penicillium restrictum and Eupenicillium erubescens. The Ukrainian Biochemical Journal, 95(4), 46–54. https://doi.org/10.15407/ubj95.04.046

Gudzenko, O. V., Varbanets, L. D. (2023). Characterization of Bacillus sp. IMV B-7883 proteases. The Ukrainian Biochemical Journal, 95(6), 46–54. https://doi.org/10.15407/ubj95.05.098

Insuasty, D., Castillo, J., Becerra, D., Rojas, H., & Abonia, R. (2020). Synthesis of Biologically Active Molecules through Multicomponent Reactions. Molecules (Basel, Switzerland), 25(3), 505. https://doi.org/10.3390/molecules25030505

Kaul, P., & Asano, Y. (2012). Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microbial biotechnology, 5(1), 18–33. https://doi.org/10.1111/j.1751-7915.2011.00280.x

Korkmaz, B., Horwitz, M. S., Jenne, D. E., & Gauthier, F. (2010). Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacological reviews, 62(4), 726–759. https://doi.org/10.1124/pr.110.002733

Kotb, E., Alabdalall, A. H., Alsayed, M. A., Alghamdi, A. I., Alkhaldi, E., AbdulAzeez, S., & Borgio, J. F. (2023). Isolation, Screening, and Identification of Alkaline Protease-Producing Bacteria and Application of the Most Potent Enzyme from Bacillus sp. Mar64. Fermentation, 9(7), 637. https://doi.org/10.3390/fermentation9070637

Kunder, M., Lakshmaiah, V., & Moideen Kutty, A. V. (2022). Selective decrease in alpha1-antitrypsin levels in diabetic retinopathy: Could the levels of it be playing a role in the pathophysiology of diabetic retinopathy? The Indian journal of medical research, 156(1), 104–110. https://doi.org/10.4103/ijmr.IJMR_1293_19

López-Otín, C., & Bond, J. S. (2008). Proteases: multifunctional enzymes in life and disease. The Journal of biological chemistry, 283(45), 30433–30437. https://doi.org/10.1074/jbc.R800035200

Mechri, S., Bouacem, K., Amziane, M., Dab, A., Nateche, F., & Jaouadi, B. (2019). Identification of a New Serine Alkaline Peptidase from the Moderately Halophilic Virgibacillus natechei sp. nov., Strain FarDT and its Application as Bioadditive for Peptide Synthesis and Laundry Detergent Formulations. BioMed research international, 6470897. https://doi.org/10.1155/2019/6470897

Mótyán, J. A., Tóth, F., & Tőzsér, J. (2013). Research applications of proteolytic enzymes in molecular biology. Biomolecules, 3(4), 923–942. https://doi.org/10.3390/biom3040923

Seifullina, I., Martsinko, E., Chebanenko, E., Pirozhok, O., Dyakonenko, V., & Shishkina, S. (2016). Synthesis and Structural Characteristics of Bis(Citrate)Germanates(IV) (Hbipy)2[Ge(HCit)2]·2H2 and [CuCl(bipy)2]2[Ge(HCit)2]·8H2O. Chemistry Journal of Moldova, 11(2), 52–57. https://doi.org/10.19261/cjm.2016.11(2).11

Seifullina, I., Martsinko, E., Chebanenko, E., Afanasenko, E., Dyakonenko, V., & Shishkina, S. (2017a). Synthesis, Structure and Investigation of Germanium(IV) and Copper(II) Complexes with Malic Acid and 1,10ʹ-phenanthroline. Chemistry Journal of Moldova, 12(2), 28–33. https://doi.org/10.19261/cjm.2016.369

Seifullina, I. I., Martsinko, E. E., Chebanenko, E. A., Pirozhok, O. V., Dyakonenko, V. V., & Shishkina, S. V. (2017b). Structure of bis(citrato)germanates with different types of cations: (Hphen)2[Ge(HCit)2·3H2O], [CuCl(phen)2]2[Ge(HCit)2·6H2O], where H4Cit is citric acid, phen IS 1,10-phenanthroline. Journal of Structural Chemistry, 58(3), 532–538. https://doi.org/10.1134/S0022476617030143

Su, Y., Liu, C., Fang, H., & Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial cell factories, 19(1), 173. https://doi.org/10.1186/s12934-020-01436-8

Trowbridge, J. O., & Moon, H. D. (1972). Purification of human Society for Experimental Biology and Medicine (New York, N.Y.), 141(3), 928–931. https://doi.org/10.3181/00379727-141-36903

Wen, G., An, W., Chen, J., Maguire, E. M., Chen, Q., Yang, F., Pearce, S. W. A., Kyriakides, M., Zhang, L., Ye, S., Nourshargh, S., & Xiao, Q. (2018). Genetic and Pharmacologic Inhibition of the Neutrophil Elastase Inhibits Experimental Atherosclerosis. Journal of the American Heart Association, 7(4), e008187. https://doi.org/10.1161/JAHA.117.008187

Wiltschi, B., Cernava, T., Dennig, A., Galindo Casas, M., Geier, M., Gruber, S., Haberbauer, M., Heidinger, P., Herrero Acero, E., Kratzer, R., Luley-Goedl, C., Müller, C. A., Pitzer, J., Ribitsch, D., Sauer, M., Schmölzer, K., Schnitzhofer, W., Sensen, C. W., Soh, J., Steiner, K., & Wriessnegger, T. (2020). Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology advances, 40, 107520. https://doi.org/10.1016/j.biotechadv.2020.107520

Yang, Z., Huang, Z., Wu, Q., Tang, X., & Huang, Z. (2023). Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst. International Journal of Molecular Sciences, 24(10), 8532. https://doi.org/10.3390/ijms24108532

Downloads

Published

2024-09-03

How to Cite

Gudzenko, O., Varbanets, L., Seifullina, I., Martsynko, O., Buchko, O., Afanasenko, E., & Chebanenko О. (2024). Modification of Bacillus sp. IMV B-7883 Elastase Activity by the Hetero-Metallic Carboxylatogermanates/Stannates. Mikrobiolohichnyi Zhurnal, 86(4), 33-40. https://doi.org/10.15407/microbiolj86.04.033