The Use of Personalized Pharmabiotics as an Approach to the Rehabilitation of Post-COVID Patients

Authors

  • L.S. Yusko Department of Medical and Biological Disciplines, State Higher Educational Institution “Uzhhorod National University”, 3 Narodna Square, Transcarpathian region, Uzhhorod, 88000, Ukraine
  • S.A. Burmei Department of Medical and Biological Disciplines, State Higher Educational Institution “Uzhhorod National University”, 3 Narodna Square, Transcarpathian region, Uzhhorod, 88000, Ukraine
  • I.S. Lemko Government Institution “The Scientific-Practical Medical Centre “Rehabilitation” Health Ministry of Ukraine”, 10 Velikokamyana Str., Transcarpathian region, Uzhhorod, 88000, Ukraine
  • A.I. Krastanov Department of Biotechnology, University of Food technologies, 26 Maritza Blvd, Plovdiv, 4002, Bulgaria
  • N.V. Boyko Department of Medical and Biological Disciplines, State Higher Educational Institution “Uzhhorod National University”, 3 Narodna Square, Transcarpathian region, Uzhhorod, 88000, Ukraine

DOI:

https://doi.org/10.15407/microbiolj86.04.064

Keywords:

COVID-19, post-COVID rehabilitation, gut-lung axis, pharmabiotics

Abstract

Successful application of defined pro- and/prebiotic preparations for the prevention and treatment of viral respiratory infections is confirmed by meta-analyses and numerous clinical trials. To date, the protocols for the rehabilitation of patients with post-COVID conditions, an integral part of which is the restoration of the balance of gut microbiota along with nutritional supportу, are widely developed and accepted. Purpose. To investigate the efficacy of individually prescribed pharmabiotics for targeted correction of the nasal and gut microbiota of post-COVID-19 patients in combination with aerosol inhalations. Methods. The post-COVID-19 patients were referred to recover using the rehabilitation facilities. In addition to the basic treatment complex, the patients were offered haloaerosol therapy with an additional prescription of individually selected pharmabiotics. Results. The use of individually prescribed pharmabiotics in combination with aerosol inhalation enabled therestoration of Lactobacillus spp. balance and reduction in the number of opportunistic microbiota in the gut. Thus, the personalized rehabilitation approach led to significantly improved local immune response in post-COVID-19 patients. Conclusions. The data obtained provide supportive evidence of the efficacy of aerosol inhalations and personalized pharmabiotics Lactobacillus rhamnosus S25 and L. plantarum A combined application in the directed modulation of the microbiome and targeted correction of local immunity in post-COVID patients. Restoring the balance of the patient’s' oral and gut microbiota should be an integral part of the post-COVID patient’s rehabilitation.

Downloads

Download data is not yet available.

References

Averina, O. V., & Danilenko, V. N. (2017). Human intestinal microbiota: Role in development and functioning of the nervous system. Microbiology, 86(1), 1–18. https://doi.org/10.1134/S0026261717010040

de Oliveira, G. L. V., Oliveira, C. N. S., Pinzan, C. F., de Salis, L. V. V., & Cardoso, C. R. de B. (2021). Microbiota Modulation of the Gut-Lung Axis in COVID-19. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.635471

Ferreira, C., Viana, S. D., & Reis, F. (2020). Gut Microbiota Dysbiosis–Immune Hyperresponse–Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms, 8(10), 1514. https://doi.org/10.3390/microorganisms8101514

Gou, W., Fu, Y., Yue, L., Chen, G., Cai, X., Shuai, M., Xu, F., Yi, X., Chen, H., Zhu, Y., Xiao, M., Jiang, Z., Miao, Z., Xiao, C., Shen, B., Wu, X., Zhao, H., Ling, W., Wang, J., … Zheng, J.-S. (2020). Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. https://doi.org/10.1101/2020.04.22.20076091

Han, S.-K., Shin, Y.-J., Lee, D.-Y., Kim, K. M., Yang, S.-J., Kim, D. S., Choi, J.-W., Lee, S., & Kim, D.-H. (2021). Lactobacillus rhamnosus HDB1258 modulates gut microbiota-mediated immune response in mice with or without lipopolysaccharide-induced systemic inflammation. BMC Microbiology, 21(1). https://doi.org/10.1186/s12866-021-02192-4

Ilyazova, A., Blazheva, D., Slavchev, A., & Krastanov, A. (2022). In vitro simulation of the gastrointestinal tract environment and its interaction with probiotic lactobacilli. BIO Web of Conferences, 45, 02003. https://doi.org/10.1051/bioconf/20224502003

Kumar, R. V. J., Seo, B. J., Mun, M. R., Kim, C.-J., Lee, I., Kim, H., & Park, Y.-H. (2010). Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Tropical Animal Health and Production, 42(8), 1855–1860. https://doi.org/10.1007/s11250-010-9648-5

Kurian, S. J., Unnikrishnan, M. K., Miraj, S. S., Bagchi, D., Banerjee, M., Reddy, B. S., Rodrigues, G. S., Manu, M. K., Saravu, K., Mukhopadhyay, C., & Rao, M. (2021). Probiotics in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. Archives of Medical Research, 52(6), 582–594. https://doi.org/10.1016/j.arcmed.2021.03.002

Lamers, M. M., Beumer, J., van der Vaart, J., Knoops, K., Puschhof, J., Breugem, T. I., Ravelli, R. B. G., Paul van Schayck, J., Mykytyn, A. Z., Duimel, H. Q., van Donselaar, E., Riesebosch, S., Kuijpers, H. J. H., Schipper, D., van de Wetering, W. J., de Graaf, M., Koopmans, M., Cuppen, E., Peters, P. J., et al. (2020). SARS-CoV-2 productively infects human gut enterocytes. Science, 369(6499), 50–54. https://doi.org/10.1126/science.abc1669

LeBegue, C. E., Love, B. L., & Wyatt, M. D. (2020). Microbes as Drugs: The Potential of Pharmabiotics. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40(2), 102–106. https://doi.org/10.1002/phar.2357

Liu, F., Ye, S., Zhu, X., He, X., Wang, S., Li, Y., Lin, J., Wang, J., Lin, Y., Ren, X., Li, Y., & Deng, Z. (2021). Gastrointestinal disturbance and effect of fecal microbiota transplantation in discharged COVID-19 patients. Journal of Medical Case Reports, 15(1). https://doi.org/10.1186/s13256-020-02583-7

Liu, Y., Liu, Q., Jiang, Y., Yang, W., Huang, H., Shi, C., Yang, G., & Wang, C. (2020). Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells. Journal of Microbiology and Biotechnology, 30(4), 515–525. https://doi.org/10.4014/jmb.1909.09041

Luoto, R., Ruuskanen, O., Waris, M., Kalliomäki, M., Salminen, S., & Isolauri, E. (2014). Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology, 133(2), 405–413. https://doi.org/10.1016/j.jaci.2013.08.020

Mańkowska-Wierzbicka, D., Zuraszek, J., Wierzbicka, A., Gabryel, M., Mahadea, D., Baturo, A., Zakerska-Banaszak, O., Slomski, R., Skrzypczak-Zielinska, M., & Dobrowolska, A. (2023). Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot Study of Whole Hypervariable 16S rRNA Gene Sequencing. Biomedicines, 11(2), 367. https://doi.org/10.3390/biomedicines11020367

Troisi, J., Venutolo, G., Pujolassos Tanyà, M., Delli Carri, M., Landolfi, A., & Fasano, A. (2021). COVID-19 and the gastrointestinal tract: source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World Journal of Gastroenterology, 27(14), 1406–1418. https://doi.org/10.3748/wjg.v27.i14.1406

Turner, R. B., Woodfolk, J. A., Borish, L., Steinke, J. W., Patrie, J. T., Muehling, L. M., Lahtinen, S., & Lehtinen, M. J. (2017). Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial. Beneficial Microbes, 8(2), 207–215. https://doi.org/10.3920/BM2016.0160

Waki, N., Matsumoto, M., Fukui, Y., & Suganuma, H. (2014). Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Letters in Applied Microbiology, 59(6), 565–571. https://doi.org/10.1111/lam.12340

Wang, K., Ran, L., Yan, T., Niu, Z., Kan, Z., Zhang, Y., Yang, Y., Xie, L., Huang, S., Yu, Q., Wu, D., & Song, Z. (2019). Anti-TGEV Miller Strain Infection Effect of Lactobacillus plantarum Supernatant Based on the JAK-STAT1 Signaling Pathway. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02540

Wei, Y., Chang, L., Ishima, T., Wan, X., Ma, L., Wuyun, G., Pu, Y., & Hashimoto, K. (2021). Abnormalities of the composition of the gut microbiota and short-chain fatty acids in mice after splenectomy. Brain, Behavior, & Immunity. Health, 11, 100198. https://doi.org/10.1016/j.bbih.2021.100198

Yeoh, Y. K., Zuo, T., Lui, G. C.-Y., Zhang, F., Liu, Q., Li, A. Y., Chung, A. C., Cheung, C. P., Tso, E. Y., Fung, K. S., Chan, V., Ling, L., Joynt, G., Hui, D. S.-C., Chow, K. M., Ng, S. S. S., Li, T. C.-M., Ng, R. W., Yip, T. C., et al. (2021). Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut, 70(4), 698–706. https://doi.org/10.1136/gutjnl-2020-323020

Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., Wan, Y., Chung, A. C. K., Cheung, C. P., Chen, N., Lai, C. K. C., Chen, Z., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chan, F. K. L., et al. (2020). Alterations in Gut Microbiota of Patients with COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944–955. https://doi.org/10.1053/j.gastro.2020.05.048

Downloads

Published

2024-09-03

How to Cite

Yusko, L., Burmei, S., Lemko, I., Krastanov, A., & Boyko, N. (2024). The Use of Personalized Pharmabiotics as an Approach to the Rehabilitation of Post-COVID Patients. Mikrobiolohichnyi Zhurnal, 86(4), 64-75. https://doi.org/10.15407/microbiolj86.04.064