Peculiarities of Bacilli Ontogenesis During Cycle from a Spore to a Vegetative Cell

Authors

  • V.G. Voitsekhovsky Bogomolets National Medical University, 13 Т. Shevchenko Boul., Kyiv, 01601, Ukraine
  • L.V. Avdeeva Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • O.B. Balko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • O.I. Balko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine

DOI:

https://doi.org/10.15407/microbiolj86.02.114

Keywords:

spore-forming bacteria, growth, differentiation, development, ontogenesis, vegetative cells, spore

Abstract

In the review, on the example of aerobic spore-forming bacteria, the problems of the development and ontogenesis of the bacterial cell are considered along with the possibilities of influencing the course of these processes. The characteristics of the main concepts "growth", "differentiation", and "development" as independent processes with their dynamic interrelation are presented. Attention is focused on the analysis of literature data on the peculiarities of vegetative cell development, starting from a spore in a dormant state and finishing with vegetative form formation. In particular, the mechanisms that maintain the spore dormant state and subsequent processes of activation, initiation, outgrowth, and vegetative cell formation are described. There are emphasized certain problems with research on the ontogenesis of bacterial cells due to the deficiency of appropriate methods, as well as the lack of a single opinion regarding individual stages of the development and vegetative form formation. It was concluded that the study of individual stages of the development of prokaryotes, which differ in spore-forming and non-spore-forming microorganisms, is still relevant. Knowledge of these processes will help scientists to develop mechanisms of influence on the ontogenesis of microorganisms.

Downloads

Download data is not yet available.

References

Alberto, F., Broussolle, V., Mason, D. R., Carlin, F., & Peck, M. W. (2003). Variability in spore germination response by strains of proteolytic Clostridium botulinum types A, B and F. Letters in applied microbiology, 36(1), 41–45. https://doi.org/10.1046/j.1472-765x.2003.01260.x

Balko, O. I., Avdeeva, L. V., Balko, O. B. (2018). Depositary Function of Pseudomonas aeruginosa Biofilm on Media with Different Carbon Source Concentration. Mikrobiolohichnyi Zhurnal, 80(6). 15-27. https://doi.org/10.15407/microbiolj80.06.015

Balko, O. B. (2019). Low Molecular Weight Pseudomonas aeruginosa Bacteriocins. Mikrobiolohichnyi Zhurnal, 81(6), 97-109. https://doi.org/10.15407/microbiolj81.06.097

Balko, O. I., Balko, O. B., Avdeeva, L. V. (2019). Thermoactivation of Pseudomonas aeruginosa Pyocins. Mikrobiolohichnyi Zhurnal, 81(5), 85-97. https://doi.org/10.15407/microbiolj81.05.085

Banawas, S., Paredes-Sabja, D., Korza, G., Li, Y., Hao, B., Setlow, P., & Sarker, M. R. (2013). The Clostridium perfringens germinant receptor protein GerKC is located in the spore inner membrane and is crucial for spore germination. Journal of bacteriology, 195(22), 5084–5091. https://doi.org/10.1128/JB.00901-13

Barlass, P. J., Houston, C. W., Clements, M. O., & Moir, A. (2002). Germination of Bacillus cereus spores in response to L-alanine and to inosine: the roles of gerL and gerQ operons. Microbiology (Reading, England), 148(Pt 7), 2089–2095. https://doi.org/10.1099/00221287-148-7-2089

Berendsen, E. M., Boekhorst, J., Kuipers, O. P., & Wells-Bennik, M. H. (2016a). A mobile genetic element profoundly increases heat resistance of bacterial spores. The ISME journal, 10(11), 2633–2642. https://doi.org/10.1038/ismej.2016.59

Berendsen, E. M., Koning, R. A., Boekhorst, J., de Jong, A., Kuipers, O. P., & Wells-Bennik, M. H. (2016b). High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn1546 Transposon. Frontiers in microbiology, 7, 1912. https://doi.org/10.3389/fmicb.2016.01912

Berendsen, E. M., Krawczyk, A. O., Klaus, V., de Jong, A., Boekhorst, J., Eijlander, R. T., Kuipers, O. P., & Wells-Bennik, M. H. (2015a). Bacillus thermoamylovorans Spores with Very-High-Level Heat Resistance Germinate Poorly in Rich Medium despite the Presence of ger Clusters but Efficiently upon Exposure to Calcium-Dipicolinic Acid. Applied and environmental microbiology, 81(22), 7791–7801. https://doi.org/10.1128/AEM.01993-15

Berendsen, E. M., Zwietering, M. H., Kuipers, O. P., & Wells-Bennik, M. H. (2015b). Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties. Food microbiology, 45(Pt A), 18–25. https://doi.org/10.1016/j.fm.2014.04.009

Bhattacharjee, D., McAllister, K. N., & Sorg, J. A. (2016). Germinants and Their Receptors in Clostridia. Journal of bacteriology, 198(20), 2767–2775. https://doi.org/10.1128/JB.00405-16

Boone, T. J., Mallozzi, M., Nelson, A., Thompson, B., Khemmani, M., Lehmann, D., Dunkle, A., Hoeprich, P., Rasley, A., Stewart, G., & Driks, A. (2018). Coordinated Assembly of the Bacillus anthracis Coat and Exosporium during Bacterial Spore Outer Layer Formation. mBio, 9(6), e01166-18. https://doi.org/10.1128/mBio.01166-18

Brunt, J., van Vliet, A. H., van den Bos, F., Carter, A. T., & Peck, M. W. (2016). Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Frontiers in microbiology, 7, 1702. https://doi.org/10.3389/fmicb.2016.01702

Brunt, J., Plowman, J., Gaskin, D. J., Itchner, M., Carter, A. T., & Peck, M. W. (2014). Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems. PLoS pathogens, 10(9), e1004382. https://doi.org/10.1371/journal.ppat.1004382

Chebotarev, A. I., Gordienko, A. S., & Kurdish, I. K. (2013). Growth peculiarities of Bacillus subtilis and streptomycin resistant mutant in the medium with saponite. Mikrobiolohichnyi Zhurnal, 75(5), 62–67.

Clauwers, C., Vanoirbeek, K., Delbrassinne, L., & Michiels, C. W. (2016). Construction of Nontoxigenic Mutants of Nonproteolytic Clostridium botulinum NCTC 11219 by Insertional Mutagenesis and Gene Replacement. Applied and environmental microbiology, 82(10), 3100–3108. https://doi.org/10.1128/AEM.03703-15

Danilyan, O. G., & Dzoban, O. P. (2020). Philosophy: textbook. (3rd ed.). Pravo.

den Besten, H. M. W., Wells-Bennik, M. H. J., & Zwietering, M. H. (2018). Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annual review of food science and technology, 9, 383–410. https://doi.org/10.1146/annurev-food-030117-012808

Eichenberger, P., Fujita, M., Jensen, S. T., Conlon, E. M., Rudner, D. Z., Wang, S. T., Ferguson, C., Haga, K., Sato, T., Liu, J.S., & Losick R. (2004). The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoSBiol, 2(10), e328. https://doi.org/10.1371/journal.pbio.0020328

Francis, M. B., Allen, C. A., Shrestha, R., & Sorg, J. A. (2013). Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS pathogens, 9(5), e1003356. https://doi.org/10.1371/journal.ppat.1003356

Galperin, M. Y., Yutin, N., Wolf, Y. I., Alvarez R.V., & Koonin, E.V. (2022). Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol, 204(6), Article e0007922. https://doi.org/10.1128/jb.00079-22

Gladka, G. V., Romanovskaya, V. A., Tashyreva, H. O., & Tashyrev, O. B. (2015). Phylogenetic Analysis and Autecology of Spore-Forming Bacteria from Hypersaline Environments. Mikrobiolohichnyi Zhurnal, 77(6), 31–38. https://doi.org/10.15407/microbiolj77.06.031

Gould, G. W. (1971). Methods for studing bacterial spores In J. R. Norris, & D. W. Ribbons (Eds.), Methods in microbiology (Vol. 6a, pp. 327–381). Academic Press. https://doi.org/10.1016/S0580-9517(08)70578-6

Gould, G. W., & Hurst, A. (1969). The bacterial spore. Academic Press.

Gould, G. W., & Ordal, Z. J. (1968). Activation of spores of Bacillus cereus by gamma-radiation. Journal of general microbiology, 50(1), 77–84. https://doi.org/10.1099/00221287-50-1-77

Handley, P. S., & Knight, D. G. (1975). Ultrastructural changes occurring during germination and outgrowth of spores of the thermophile Bacillus acidocaldarius. Archives of microbiology, 102(2), 155–161. https://doi.org/10.1007/BF00428361

Harry E. J. (2001). Coordinating DNA replication with cell division: lessons from outgrowing spores. Biochimie, 83(1), 75–81. https://doi.org/10.1016/s0300-9084(00)01220-7

Javets, E., Melnyk, J., & Elderberg, E. A. (1982). Morphological changes in the process of bacterial growth: Guide to medical microbiology (Vol. 1). Medicine.

Kalakutsky, L. V., & Agre, N. S. (1977). Development of actinomycetes. Nauka.

Keynan, A. (1973). The transformation of bacterial endospores into vegetative cells. In Microbial. differentiation: 23 symposium soc. gen. microbial (pp. 85–123). Cambridge univ. press.

Keynan, A. (1972). Criptobiosis: a review of the mechanisms ametabolic state in bacterial spores. In H. O. Halvorson, R. Hanson, & L. L. Campbell (Eds.), Spores (vol. 5, pp. 355–362). Am Soc Microbiol.

Keynan, A., & Evenchik, Z. (1969). Activation. In G. W. Gould, & A. Hurst (Eds.), The bacterial spore (pp. 359–396). Academic Press.

Keynan, A., Evenchik, Z., Halvorson, H. O., & Hastings J. (1964). Activation of bacterial endospores. Journal of Bacteriology, 88(2), 313–318. https://doi.org/10.1128/jb.88.2.313-318.1964

Khanna, K., Lopez-Garrido, J., & Pogliano, K. (2020). Shaping an endospore: architectural transformations during Bacillus subtilis sporulation. Annu Rev Microbiol, 74, 361–386. https://doi.org/10.1146/annurev-micro-022520-074650

Korza, G., DePratti, S., Fairchild, D., Wicander, J., Kanaan, J., Shames, H., Nichols, F. C., Cowan, A., Brul, S., & Setlow, P. (2023). Expression of the 2Duf protein in wild-type Bacillus subtilis spores stabilizes inner membrane proteins and increases spore resistance to wet heat and hydrogen peroxide. Journal of applied microbiology, 134(3), lxad040. https://doi.org/10.1093/jambio/lxad040

Krawczyk, A. O., de Jong, A., Omony, J., Holsappel, S., Wells-Bennik, M. H. J., Kuipers, O. P., & Eijlander, R. T. (2017). Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis. Applied and environmental microbiology, 83(7), e03122–16. https://doi.org/10.1128/AEM.03122-16

Krut', V. V., Dankevych, L.A., Votselko, S. K., & Patyka, V. P. (2014). Influence of different adhesive composition on sporulation and protein synthesis by Bacillus thuringiensis collection strains. Mikrobiolohichnyi Zhurnal, 76(5), 34–41.

Lazarenko, L. M., Babenko, L. P., Safronova, L. A., Demchenko, O. M., Bila, V. V., Zaitseva, G. M., & Spivak, M. Ya. (2023). Antimicrobial and Immunomodulatory Action of Probiotic Composition of Bacilli on Bacterial Vaginitis in Mice. Mikrobiolohichnyi Zhurnal, 85(3), 48–60. https://doi.org/10.15407/microbiolj85.03.048

Łubkowska, B., Jeżewska-Frąckowiak, J., Sobolewski, I., & Skowron, P. M. (2021). Bacteriophages of Thermophilic 'Bacillus Group' Bacteria-A Review. Microorganisms, 9(7), 1522. https://doi.org/10.3390/microorganisms9071522

Maayer, P., Aliyu, H., & Cowan, D. A. (2019). Reorganising the order Bacillales through phylogenomics. Systematic and applied microbiology, 42(2), 178–189. https://doi.org/10.1016/j.syapm.2018.10.007

Meeske, A. J., Rodrigues, C. D., Brady, J., Lim, H. C., Bernhardt, T. G., & Rudner, D. Z. (2016). High-throughput genetic screens identify a large and diverse collection of new sporulation genes in Bacillus subtilis. PLoSBiol, 14(1), e1002341. https://doi.org/10.1371/journal.pbio.1002341

Melly, E., & Setlow, P. (2001). Heat shock proteins do not influence wet heat resistance of Bacillus subtilis spores. Journal of Bacteriology, 183(2), 779–784. https://doi.org/10.1128/JB.183.2.779-784.2001

Moriyama, R., Fukuoka, H., Miyata, S., Kudoh, S., Hattori, A., Kozuka, S., Yasuda, Y., Tochikubo, K., & Makino, S. (1999). Expression of a germination-specific amidase, SleB, of Bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. Journal of bacteriology, 181(8), 2373–2378. https://doi.org/10.1128/JB.181.8.2373-2378.1999

Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and molecular biology reviews: MMBR, 64(3), 548–572. https://doi.org/10.1128/MMBR.64.3.548-572.2000

Olguín-Araneda, V., Banawas, S., Sarker, M. R., & Paredes-Sabja, D. (2015). Recent advances in germination of Clostridium spores. Research in microbiology, 166(4), 236–243. https://doi.org/10.1016/j.resmic.2014.07.017

Paidhungat, M., Ragkousi, K., & Setlow, P. (2001). Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. Journal of Bacteriology, 183(16), 4886–4893. https://doi.org/10.1128/JB.183.16.4886-4893.2001

Paredes-Sabja, D., Setlow, P., & Sarker, M. R. (2011). Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends in microbiology, 19(2), 85–94. https://doi.org/10.1016/j.tim.2010.10.004

Paredes-Sabja, D., Setlow, B., Setlow, P., & Sarker, M. R. (2008a). Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid. Journal of Bacteriology, 190(13), 4648–4659. https://doi.org/10.1128/JB.00325-08

Paredes-Sabja, D., Torres, J. A., Setlow, P., & Sarker, M. R. (2008b). Clostridium perfringens spore germination: characterization of germinants and their receptors. Journal of Bacteriology, 190(4), 1190–1201. https://doi.org/10.1128/JB.01748-07

Paredes-Sabja, D., Bond, C., Carman, R. J., Setlow, P., & Sarker, M. R. (2008c). Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD). Microbiology (Reading, England), 154(Pt8), 2241–2250. https://doi.org/10.1099/mic.0.2008/016592-0

Paul, C., Filippidou, S., Jamil, I., Kooli, W., House, G. L., Estoppey, A., Hayoz, M., Junier, T., Palmieri, F., Wunderlin, T., Lehmann, A., Bindschedler, S., Vennemann, T., Chain, P. S. G., & Junier, P. (2019). Bacterial spores, from ecology to biotechnology. Advances in applied microbiology, 106, 79–111. https://doi.org/10.1016/bs.aambs.2018.10.002

Plowman, J., & Peck, M. W. (2002). Use of a novel method to characterize the response of spores of non-proteolytic Clostridium botulinum types B, E and F to a wide range of germinants and conditions. Journal of applied microbiology, 92(4), 681–694. https://doi.org/10.1046/j.1365-2672.2002.01569.x

Popham, D. L., Gilmore, M. E., & Setlow, P. (1999a). Roles of low-molecular-weight penicillin-binding proteins in Bacillus subtilis spore peptidoglycan synthesis and spore properties. Journal of Bacteriology, 181(1), 126–132. https://doi.org/10.1128/JB.181.1.126-132.1999

Popham, D. L., Meador-Parton, J., Costello, C. E., & Setlow, P. (1999b). Spore peptidoglycan structure in a cwlDdacB double mutant of Bacillus subtilis. Journal of Bacteriology, 181(19), 6205–6209. https://doi.org/10.1128/JB.181.19.6205-6209.1999

Qin, H., & Driks, A. (2013). Contrasting evolutionary patterns of spore coat proteins in two Bacillus species groups are linked to a difference in cellular structure. BMC evolutionary biology, 13, 261. https://doi.org/10.1186/1471-2148-13-261

Secaira-Morocho, H., Castillo, J. A., & Driks, A. (2020). Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales. Microb. Genom, 6(11), mgen000451. https://doi.org/10.1099/mgen.0.000451

Setlow P. (2014). Germination of spores of Bacillus species: what we know and do not know. Journal of Bacteriology, 196(7), 1297–1305. https://doi.org/10.1128/JB.01455-13

Setlow P. (2013). Summer meeting 201 – when the sleepers wake: the germination of spores of Bacillus species. Journal of applied microbiology, 115(6), 1251–1268. https://doi.org/10.1111/jam.12343

Setlow P. (2006). Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of applied microbiology, 101(3), 514–525. https://doi.org/10.1111/j.1365-2672.2005.02736.x

Setlow, B., Cowan, A. E., & Setlow, P. (2003). Germination of spores of Bacillus subtilis with dodecylamine. Journal of applied microbiology, 95(3), 637–648. https://doi.org/10.1046/j.1365-2672.2003.02015.x

Setlow, B., & Setlow, P. (1996). Role of DNA repair in Bacillus subtilis spore resistance. Journal of Bacteriology, 178(12), 3486–3495. https://doi.org/10.1128/jb.178.12.3486-3495.1996

Smirnov, V. V., Osadchaya, A. I., Kudryavtsev, V. D., & Safronova L. A. (1993). Growth and sporulation of Bacillus subtilis in various aeration conditions. Mikrobiol Journal, 55(3), 38–43.

Subirana, J. A., & Messeguer, X. (2021). Tandem Repeats in Bacillus: Unique Features and Taxonomic Distribution. International journal of molecular sciences, 22(10), 5373. https://doi.org/10.3390/ijms22105373

Suitso, I., Jõgi, E., Talpsep, E., Naaber, P., Lõivukene, K., Ots, M. L., Michelson, T., & Nurk, A. (2010). Protective effect by Bacillus smithii TBMI12 spores of Salmonella serotype enteritidis in mice. Beneficial microbes, 1(1), 37–42. https://doi.org/10.3920/BM2008.1001

Thackray, P. D., Behravan, J., Southworth, T. W., & Moir, A. (2001). GerN, an antiporter homologue important in germination of Bacillus cereus endospores. Journal of Bacteriology, 183(2), 476–482. https://doi.org/10.1128/JB.183.2.476-482.2001

Troiano, A. J., Jr, Zhang, J., Cowan, A. E., Yu, J., & Setlow, P. (2015). Analysis of the dynamics of a Bacillus subtilis spore germination protein complex during spore germination and outgrowth. Journal of Bacteriology, 197(2), 252–261. https://doi.org/10.1128/JB.02274-14

Vanek, Z., & Winter V. (1977). Processes of regulation during division, sporulation and synthesis of metabolites in microorganisms. Mikrobiolohichnyi Zhurnal, 39(1), 683–695.

Varbanets, L. D., Matseliukh, O. V., Nidialkova, N. A., Gudzenko, O. V., Avdiyuk, K. V., Shmatkova, N. V., & Seifullina, I.I. (2014). Influence of coordination compounds of germanium (IV) and stannum (IV) on activity of some microbial enzymes with glycolytic and proteolytic action. Mikrobiolohichnyi Zhurnal, 76(6), 11–18.

Vepachedu, V. R., & Setlow, P. (2007). Role of SpoVA proteins in release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme. Journal of Bacteriology, 189(5), 1565–1572. https://doi.org/10.1128/JB.01613-06

Wang, S., Shen, A., Setlow, P., & Li, Y. Q. (2015). Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. Journal of Bacteriology, 197(14), 2361–2373. https://doi.org/10.1128/JB.00200-15

Wang, G., Yi, X., Li, Y. Q., & Setlow, P. (2011). Germination of individual Bacillus subtilis spores with alterations in the GerD and SpoVA proteins, which are important in spore germination. Journal of Bacteriology, 193(9), 2301–2311. https://doi.org/10.1128/JB.00122-11

Warda, A. K., Xiao, Y., Boekhorst, J., Wells-Bennik, M. H. J., Nierop Groot, M. N., & Abee, T. (2017). Analysis of Germination Capacity and Germinant Receptor (Sub)clusters of Genome-Sequenced Bacillus cereus Environmental Isolates and Model Strains. Applied and environmental microbiology, 83(4), e02490-16. https://doi.org/10.1128/AEM.02490-16

Weedmark, K. A., Mabon, P., Hayden, K. L., Lambert, D., Van Domselaar, G., Austin, J. W., & Corbett, C. R. (2015). Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data. Applied and environmental microbiology, 81(17), 5938–5948. https://doi.org/10.1128/AEM.01155-15

Wells-Bennik, M. H., Eijlander, R. T., den Besten, H. M., Berendsen, E. M., Warda, A. K., Krawczyk, A. O., Nierop Groot, M. N., Xiao, Y., Zwietering, M. H., Kuipers, O. P., & Abee, T. (2016). Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annual review of food science and technology, 7, 457–482. https://doi.org/10.1146/annurev-food-041715-033144

Xiao, Y., Francke, C., Abee, T., & Wells-Bennik, M. H. (2011). Clostridial spore germination versus bacilli: genome mining and current insights. Food microbiology, 28(2), 266–274. https://doi.org/10.1016/j.fm.2010.03.016

Yu, B., Kanaan, J., Shames, H., Wicander, J., Aryal, M., Li, Y., Korza, G., Brul, S., Kramer, G., Li, Y. Q., Nichols, F. C., Hao, B., & Setlow, P. (2023). Identification and characterization of new proteins crucial for bacterial spore resistance and germination. Frontiers in microbiology, 14, 1161604. https://doi.org/10.3389/fmicb.2023.1161604

Zebrowska, J., Witkowska, M., Struck, A., Laszuk, P. E., Raczuk, E., Ponikowska, M., Skowron, P. M., & Zylicz-Stachula, A. (2022). Antimicrobial Potential of the Genera Geobacillus and Parageobacillus, as Well as Endolysins Biosynthesized by Their Bacteriophages. Antibiotics (Basel, Switzerland), 11(2), 242. https://doi.org/10.3390/antibiotics11020242

Zheng, L., Abhyankar, W., Ouwerling, N., Dekker, H. L., van Veen, H., van der Wel, N. N., Roseboom, W., de Koning, L. J., Brul, S., & de Koster, C. G. (2016). Bacillus subtilis spore inner membrane proteome. J. Proteome Res, 15(2), 585–594. https://doi.org/10.1021/acs.jproteome.5b00976

Downloads

Published

2024-04-28

How to Cite

Voitsekhovsky, V., Avdeeva, L., Balko, O., & Balko, O. (2024). Peculiarities of Bacilli Ontogenesis During Cycle from a Spore to a Vegetative Cell. Mikrobiolohichnyi Zhurnal, 86(2), 114-126. https://doi.org/10.15407/microbiolj86.02.114
Received 2023-11-21
Accepted 2023-12-23
Published 2024-04-28