Genes of Streptomyces globisporus 1912-4Crt Encoding Chitin Catabolism Enzymes
DOI:
https://doi.org/10.15407/microbiolj86.04.053Keywords:
hydrolase, chitin, streptomycete, nucleotide and amino acid sequencesAbstract
Polysaccharide chitin is one of the most common biopolymers in nature. Chitin (when used as the sole source of energy, carbon, and nitrogen) has been shown to be a substrate sufficient to enable the growth and synthesis of secondary metabolites by the S. griseus NCIMB 8136 strain and some other streptomycetes. The species Streptomyces globisporus and S. griseus belong to the same lower hierarchical taxon (S. griseus clade). The aim was to find in the S. globisporus 1912-4Crt genome genes encoding proteins that are necessary for chitin fermentation and transmembrane transport of resulting products. Methods. The object of the study was a sequence of the S. globisporus 1912-4Crt genome (reference NZ_QWFA01000000.1, GenBank) on the server of NCBI (The National Center for Biotechnology Information). Streptomycete S. globisporus 1912 and its variants are producers of antibiotic landomycin E and carotenoids. Search for and analysis of nucleotide and amino acid sequences were performed using programs BLAST (Basic Local Alignment Search Tool) on the aforementioned server. Results. A set of genes that determine enzymes of chitin catabolism and Ngc-transporter proteins were identified in the S. globisporus 1912-4Crt genome. Genes encoding 10 endo-acting chitinases (from the GH18 and GH19 families) and 2 exo-acting hydrolases (GH20) were identified in the S. globisporus 1912-4Crt sequence. Several genes determining deacetylases that deacetylate both chitin and oligosaccharides were found in the genome of the strain. One gene that determines endo-acting chitosanase from the GH75 family was discovered there. The ability of the wild-type strain S. globisporus 1912 and a number of its variants (including S. globisporus 1912-4Crt) to ferment chitin was proven in vitro. Conclusions. A set of genes sufficient for chitin assimilation was established in the S. globisporus 1912-4Crt genome sequence. Streptomycetes from different clades (for example, strains of S. coelicolor (S. albidoflavus group) and S. griseus, S. globisporus (S. griseus group)) containing different complexes of chitinolytic enzymes could be suggested.
Downloads
References
Chen, J. K., Shen, C. R., & Liu, C. L. (2010). N-acetylglucosamine: production and applications. Mar Drugs, 8(9), 2493–2516. https://doi.org/10.3390/md8092493
Dubeau, M. P., Poulin-Laprade, D., Ghinet, M. G., & Brzezinski, R. (2011). Properties of CsnR, the transcriptional repressor of the chitosanase gene, csnA, of Streptomyces lividans. J Bacteriol, 193(10), 2441–2450. https://doi.org/10.1128/JB.01476-10
Duhsaki, L., Mukherjee, S., & Madhuprakash, J. (2023). Improving the efficiency and sustainability of chitin bioconversion through a combination of Streptomyces chitin-active-secretomes and mechanical-milling. Green Chemistry, 22(17), 6832–6844. https://doi.org/10.1039/D3GC01084H
Gooday, G. W. (1990). Physiology of microbial degradation of chitin and chitosan. Biodegradation, 1, 177–190. https://doi.org/10.1007/BF00058835
Gupta, R., Saxena, R. K., Chaturvedi, P., & Virdi, J. S. (1995). Chitinase production by S. viridificans: its potential in fungal cell wall lysis. J. Applied Bacteriol, 78(4), 378–383. https://doi.org/10.1111/j.1365-2672.1995.tb03421.x
Hunt, D. E., Gevers, D., Vahora, N. M., & Polz, M. F. (2008). Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol, 74 (1), 44–51. https://doi.org/10.1128/AEM.01412-07
Jung, W. J., & Park, D. P. (2014). Bioproduction of chitooligosaccharides: present and perspectives. Marine Drugs, 12(11), 5328–5356. https://doi.org/10.3390/md12115328
Kawase, T., Yokokawa, S., Saito, A., Fujii, T., Nikaidou, N., Miyashita, K., & Watanabe, T. (2006). Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). Bioscience, Biotechnology, and Biochem, 70(4), 988–998. https://doi.org/10.1271/bbb.70.988
Kaczmarek, M. B., Struszczyk-Wita, K., Li, X., Szczesna-Antczak, M., & Daroch, M. (2019). Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front Bioeng Biotechnol, 7, 243. https://doi.org/10.3389/fbioe.2019.00243
Kielak, A. M., Cretoiu, M. S., Semenov, A. V., Sorensen, S. J. & van Elsas, J. D. (2013). Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Applied and Envir Microbiol, 79(1), 263–272. https://doi.org/10.1128/AEM.02546-12
Matselyukh, B. P., Polishchuk, L. V., Lukyanchuk, V. V., Golembiovska, S. L., & Lavrenchuk, V. Y. (2016). Sequences of landomycin E and carotenoid biosynthetic gene clusters, and molecular structure of transcriptional regulator of Streptomyces globisporus 1912. Mikrobiol Z, 78(6), 60–70. https://doi.org/10.15407/microbiolj78.06.060
Meanwell, R. J. L., & Shama, G. (2005). Chitin in a dual role as substrate for Streptomyces griseus and as adsorbent for streptomycin produced during fermentation. Enzyme and Microbial Technology, 38(5), 657–664. https://doi.org/10.1016/j.enzmictec.2005.07.017
Meanwell, R. J. L., & Shama, G. (2007). Production of streptomycin from chitin using Streptomyces griseus in bioreactors of different configuration. Bioresource Technology, 99(13), 5634–5639. https://doi.org/10.1016/j.biortech.2007.10.036
Paoletti, M. G., Norberto, L., Damini, R., & Musumeci, S. (2007). Human gastric juice contains chitinase that can degrade chitin. Annals of Nutrition & Metabolism, 51(3), 244–51. https://doi.org/10.1159/000104144
Polishchuk, L. V. (2023a). Distribution of chitinase genes in the genomes of streptomycetes of the Streptomyces albovinaceus subgroup. Plant physiology and genetics, 55(3), 225–233. https://doi.org/10.15407/frg2023.03.225
Polishchuk, L. V. (2023b). Prevalence of chitinases GH19 in streptomycetes from Streptomyces griseus clades and differences in their organizations. Environmental Sciences, 2(47), 148–153. https://doi.org/10.32846/2306-9716/2023.eco.2-47.24
Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A. W., Hopwood, D. A., & van Wezel, G. P. (2008). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep, 9(7), 670–675. https://doi.org/10.1038/embor.2008.83
Saito, A., Fujii, T., Yoneyama, T., Redenbach, M., Ohno, T., Watanabe, T., & Miyashita, K. (1999). High-multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem, 63(4), 710–718. https://doi.org/10.1271/bbb.63.710
Schrempf, H. (2001). Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek, 79(3–4), 285–289. https://doi.org/10.1023/A:1012058205158
van Wezel, G. P., & McDowall, K. J. (2011). The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep, 28(7), 1311–1333. https://doi.org/10.1039/c1np00003a
Viens, P., Lacombe-Harvey, M. È., & Brzezinski, R. (2015). Chitosanases from family 46 of glycoside hydrolases: From proteins to phenotypes. Mar Drugs, 13(11), 6566–6587. https://doi.org/10.3390/md13116566
Veliz, E. A, Martínez-Hidalgo, P., & Hirsch, A. M. (2017). Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, 3(3), 689–705. https://doi.org/10.3934/microbiol.2017.3.689
Wang, S. L., Shih, I. L., Liang, T. W. & Wang, C. H. (2002a). Purification and characterization of two antifungal chitinases produced by the Bacillus amyloliquefaciens V656 in а shrimp and crab shell powder medium. J Agric Food Chem, 50(8), 2241–2248. https://doi.org/10.1021/jf010885d
Wang, F., Xiao, X., Saito, A., & Schrempf, H. (2002b). Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine. Mol Genet Genomics, 268(3), 344–351. https://doi.org/10.1007/s00438-002-0749-3
Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao, K. (2020). Chitosan derivatives and their application in biomedicine. Int J Mol Sci, 21(2), 487. https://doi.org/10.3390/ijms21020487
Xiao, X., Wang, F., Saito, A., Majka, J., Schlösser, A., & Schrempf, H. (2002). The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N,N'-diacetylchitobiose. Mol Genet Genomics, 267(4), 429–439. https://doi.org/10.1007/s00438-002-0640-2
Xiao, X., Xuebin, Y., Lin, J., Sun, L., You, Z., Wang, P., & Wang, F. (2005). Chitinase genes in lake sediments of Ardley Island, Antarctica. Appl Environ Microbiol, 71(12), 7904–7909. https://doi.org/10.1128/AEM.71.12.7904-7909.2005
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mikrobiolohichnyi Zhurnal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.