Adaptation of Ochrobactrum rhizosphaerae IMV B-7956 Bacteria to the Influence of Copper (II) Chloride

Authors

DOI:

https://doi.org/10.15407/microbiolj86.03.058

Keywords:

heavy metals, oxidative stress, reactive oxygen species, antioxidant enzymes, superoxide dismutase, catalase, glutathione system enzymes

Abstract

In technologically altered habitats, an increased content of organic compounds, nitrogen, phosphorus, sulfur compounds, antibiotic substances, etc. is found. Therefore, microorganisms that are systematically exposed to various stressors have developed adaptation mechanisms. The strain Ochrobactrum rhizosphaerae IMV B-7956, isolated from the infiltrate lakes of the Lviv solid waste landfill, is resistant to copper, chromium, manganese, and iron in concentrations exceeding the maximum permissible concentrations. The work aimed to study the response of O. rhizosphaerae IMV B-7956 cells to CuCl2 exposure by detecting changes in the content of lipid peroxidation products, products of the oxidative modification of proteins, activity of antioxidant defense system enzymes, and synthesis of extracellular polymers. Methods. To study the effect of CuCl2 on prooxidant indicators and the activity of enzymes of the antioxidant defense system, bacteria were pre-incubated in Tris-HCl buffer containing 2–10 mM CuCl2. After one hour of incubation, the bacterial cells were washed and cultured for 1, 12, 24, and 48 h in metal-free media. The copper content in the bacterial cells was determined by atomic absorption spectrometry. The content of lipid peroxidation indicators, carbonyl groups in proteins, total low-molecular-weight thiols, enzymatic activity, and the content of exopolysaccharides and extracellular proteins were determined photometrically. Results. Within an hour, O. rhizosphaerae IMV B-7956 bacteria accumulated 2.3–7.8 mg Cu/g of biomass. Under these conditions, an increased content of lipid peroxidation products was detected. During the first hour of growth in bacterial cells, enzymes with catalase and peroxidase activity were activated. During further cultivation, an increase in the activity of other antioxidant defense enzymes was detected. Carbonyl groups in proteins are probably formed due to an increase in the content of lipid peroxidation products, as they are formed later. Within 12–48 h of growth, the copper content in the bacterial cells decreases. This leads to the restoration of growth. Conclusions. The main damaging effect of CuCl2 on bacterial cells was detected during the first 24 h of growth. Activation of the enzymes of the antioxidant system and synthesis of exopolysaccharides are among the adaptations that ensure the survival of bacteria under these conditions.

Downloads

Download data is not yet available.

References

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Chain, P. S., Comerci, D. J., Tolmasky, M. E., Larimer, F. W., Malfatti, S. A., Vergez, L. M., Aguero, F., Land, M. L., Ugalde, R. A., Garcia, E. (2005). Whole-genome analyses of speciation events in pathogenic Brucellae. Infection and immunity, 73(12), 8353-8361. https://doi.org/10.1128/IAI.73.12.8353-8361.2005

Chaturvedi, V., & Verma, P. (2015). Biodegradation of malachite green by a novel copper-tolerant Ochrobactrum pseudogrignonense strain GGUPV1 isolated from copper mine waste water. Bioresources and Bioprocessing, 2(1), 1-9. https://doi.org/10.1186/s40643-015-0070-8

Chen, C., Lei, W., Lu, M., Zhang, J., Zhang, Z., Luo, C., Chen, Y., Hong, Q., Shen, Z. (2015). Characterization of Cu (II) and Cd (II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. Environmental Science and Pollution Research, 23, 6861-6872. https://doi.org/10.1007/s11356-015-5926-0

Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., & Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clinica chimica acta, 329(1-2), 23-38. https://doi.org/10.1016/S0009-8981(03)00003-2

DelVecchio, V. G., Kapatral, V., Redkar, R. J., Patra, G., Mujer, C., Los, T., Ivanova, N., Anderson, I., Bhattacharyya, A., Lykidis, A., Reznik, G., Jablonski, L., Larsen, N., D'Souza, M., Bernal, A., Mazur, M., Goltsman, E., Selkov, E., Elzer, P. H., Hagius, S., O'Callaghan, D., Letesson, J.-J., Haselkorn, R., Kyrpides, N., Overbeek, R. (2002). The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proceedings of the National Academy of Sciences, 99(1), 443-448. https://doi.org/10.1073/pnas.221575398

Faisal, M., & Hasnain, S. (2005). Beneficial role of hydrophytes in removing Cr (VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium. International Journal of Phytoremediation, 7(4), 271-277. https://doi.org/10.1080/16226510500327111

Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30(8), 1749-1758. https://doi.org/10.1016/0043-1354(95)00323-1

Ghaed, S., Shirazi, E. K., & Marandi, R. (2013). Biosorption of copper ions by Bacillus and Aspergillus species. Adsorption Science & Technology, 31(10), 869-890. https://doi.org/10.1260/0263-6174.31.10.869

Hawkins, C. L., Morgan, P. E., & Davies, M. J. (2009). Quantification of protein modification by oxidants. Free Radical Biology and Medicine, 46(8), 965-988. https://doi.org/10.1016/j.freeradbiomed.2009.01.007

He, Z., Gao, F., Sha, T., Hu, Y., & He, C. (2009). Isolation and characterization of a Cr (VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. Journal of hazardous materials, 163(2-3), 869-873. https://doi.org/10.1016/j.jhazmat.2008.07.041

Holovchak, N. P., Tarnovska, A. V., Kotsyumbas, H. I., & Sanahurskyy, D. I. (2012). Protsesy perekysnoho okysnennya lipidiv u zhyvykh orhanizmakh: monohrafiya [Processes of lipid peroxidation in living organisms: monograph.]. LNU imeni Ivana Franka. [in Ukrainian].

Hnatush, S., Komplikevych, S., Maslovska, O., Moroz, O., Peretyatko, T., Dzhulai, А., & Krasnozhon, T. (2021a). Bacteria of the genus Pseudomonas isolated from Antarctic substrates. Ukrainian Antarctic journal, 2, 58-75. https://doi.org/10.33275/1727-7485.2.2021.678

Hnatush, S. O., Maslovska, O. D., Komplikevych, S. Y., & Kovbasa, I. V. (2022). Influence of cobalt chloride and ferric citrate on purple non-sulfur bacteria Rhodopseudomonas yavorovii. Biosystems Diversity, 30(1), 31-38. https://doi.org/10.15421/012204

Hnatush, S., Moroz, O., Maslovska, O., Komplikevych, S. (2021b). Certificate of deposit of the bacterial strain Ochrobactrum rhizosphaerae K-3 in the Depository of the Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine with the registration number Ochrobactrum rhizosphaerae IMV B-7956 dated 23.07.2021.

Hu, M., Li, X., Li, Z., Liu, B., Yang, Z., & Tian, Y. (2020). Ochrobactrum teleogrylli sp. nov., a pesticide-degrading bacterium isolated from the insect Teleogryllus occipitalis living in deserted cropland. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2217-2225. https://doi.org/10.1099/ijsem.0.003964

Huber, B., Scholz, H. C., Kämpfer, P., Falsen, E., Langer, S., & Busse, H. J. (2010). Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. International journal of systematic and evolutionary microbiology, 60(2), 321-326. https://doi.org/10.1099/ijs.0.011668-0

Imran, A., Saadalla, M. J. A., Khan, S. U., Mirza, M. S., Malik, K. A., & Hafeez, F. Y. (2014). Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Annals of microbiology, 64, 1797-1806. https://doi.org/10.1007/s13213-014-0824-0

Kannan, N. B., Kohli, P., Shekhar, M., Sen, S., Lalitha, P., Pai, A., & Ramasamy, K. (2022). Ochrobactrum anthropi: A rare cause of culture-proven acute post-operative cluster endophthalmitis. Ocular Immunology and Inflammation, 30(7-8), 1756-1762. https://doi.org/10.1080/09273948.2021.1945636

Koh, E. I., & Henderson, J. P. (2015). Microbial copper-binding siderophores at the host-pathogen interface. Journal of Biological Chemistry, 290(31), 18967-18974. https://doi.org/10.1074/jbc.R115.644328

Komplikevych, S., Maslovska, O., Moravska, T., Yarmoliuk, I., Biront, N., Zaritska, Y., & Hnatush, S. (2023a). Adaptations of the antarctic bacterium Paenibacillus tundrae IMV B-7915 to CuCl2exposure. Ukrainian Antarctic Journal, 21(26), 66-78. https://doi.org/10.33275/1727-7485.1.2023.707

Komplikevych, S., Maslovska, O., Peretyatko, T., Moroz, O., Diakiv, S., Zaritska, Y., Parnikoza, I., Hnatush, S. (2023b). Culturable microorganisms of substrates of terrestrial plant communities of the Maritime Antarctic (Galindez Island, Booth Island). Polar Biology, 46, 1-19. https://doi.org/10.1007/s00300-022-03103-7

Liu, Y.-G., Liao, T., He, Z.-B., Li, T.-T., Wang, H., Hu, X.-J., Guo, Y.-M., & He, Y. (2013). Biosorption of copper (II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads. Transactions of Nonferrous Metals Society of China, 23(6), 1804-1814. https://doi.org/10.1016/S1003-6326(13)62664-3

Lushchak, V. I., Bahnyukova, T. V., & Lushchak, O. V. (2004). Pokaznyky oksydatyvnoho stresu. 1. Thiobarbiturat aktyvni produkty i karbonilʹni hrupy bilkiv [Indices of oxidative stress.1. TBA-reactive substances and carbonylproteins]. Ukrainian Biochemical Journal, 26, 136-141.

Mahmood, Q., Hu, B., Cai, J., Zheng, P., Azim, M. R., Jilani, G., & Islam, E. (2009). Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system. Journal of Hazardous Materials, 165(1-3), 558-565. https://doi.org/10.1016/j.jhazmat.2008.10.021

Malovanyy, M., Moroz, O., Hnatush, S., Maslovska, O., Zhuk, V., Petrushka, I., Nykyforov, V., Sereda, A. (2019). Perspective technologies of the treatment of the wastewaters with high content of organic pollutants and ammoniacal nitrogen. Journal of ecological engineering, 20(2), 8-15. https://doi.org/10.12911/22998993/94917

Maslovska, O., Komplikevych, S., & Hnatush, S. (2023). Oxidative stress and protection against it in bacteria. Studia Biologica, 17(2), 153-172. https://doi.org/10.30970/sbi.1702.716

Minogue, T. D., Daligault, H. A., Davenport, K. W., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Chertkov, O., Coyne, S. R., Frey, K. G., Gibbons, H. S., Jaissle, J., Koroleva, G. I., Ladner, J. T., Lo, C.-C., Palacios, G. F., Redden, C. L., Rosenzweig, C. N., Scholz, M. B., Xu, Y., Johnson, S. L. (2014). Whole-genome sequences of 24 Brucella strains. Genome announcements, 2(5), Article e00915-14. https://doi.org/10.1128/genomeA.00915-14

Mishra, S. K., Misra, S., Dixit, V. K., Kar, S., & Chauhan, P. S. (2023). Ochrobactrum sp. NBRISH6 Inoculation Enhances Zea mays Productivity, Mitigating Soil Alkalinity and Plant Immune Response. Current Microbiology, 80(10), Article e328. https://doi.org/10.1007/s00284-023-03441-7

Morais, P. V., Branco, R., & Francisco, R. (2011). Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals, 24, 401-410. https://doi.org/10.1007/s10534-011-9446-1

Nanda, M., Kumar, V., & Sharma, D. K. (2019). Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to 'clean-up'heavy metal contaminants from water. Aquatic toxicology, 212, 1-10. https://doi.org/10.1016/j.aquatox.2019.04.011

Oleksiuk, N. P., & Yanovych, V. G. (2010). The activity of pro- and antioxidant systems in the liver of freshwater fishes in different seasons. Ukrainian Biochemical Journal, 82(3), 41-48.

Pan, X., Liu, J., Zhang, D., Chen, X., Li, L., Song, W., & Yang, J. (2010). A comparison of five extraction methods for extracellular polymeric substances (EPS) from biofilm by using threedimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. Water SA, 36(1). https://doi.org/10.4314/wsa.v36i1.50914

Paulsen, I. T., Seshadri, R., Nelson, K. E., Eisen, J. A., Heidelberg, J. F., Read, T. D., Dodson, R. J., Umayam, L., Brinkac, L. M., Beanan, M. J., Daugherty, S. C., Deboy, R. T., Durkin, A. S., Kolonay, J. F., Madupu, R., Nelson, W. C., Ayodeji, B., Kraul, M., Shetty, J., Malek, J., Van Aken, S. E., Riedmuller, S., Tettelin, H., Gill, S. R., White, O., Salzberg, S. L., Hoover, D. L., Lindler, L. E., Halling, S. M., Boyle, S. M., & Fraser, C. M. (2002). The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proceedings of the National Academy of Sciences, 99(20), 13148-13153. https://doi.org/10.1073/pnas.192319099

Peng, H., Li, D., Ye, J., Xu, H., Xie, W., Zhang, Y., Wua, M., Xua, L., Lianga, Y., & Liu, W. (2019a). Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper. Journal of environmental management, 235, 224-230. https://doi.org/10.1016/j.jenvman.2019.01.060

Peng, H., Xie, W., Li, D., Wu, M., Zhang, Y., Xu, H., Ye, J., Ye, T., Xu, L., Liang, Y., & Liu, W. (2019b). Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater. Ecotoxicology and Environmental Safety, 168, 17-26. https://doi.org/10.1016/j.ecoenv.2018.10.066

Prado Acosta, M., Valdman, E., Leite, S. G. F., Battaglini, F., & Ruzal, S. M. (2005). Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World Journal of Microbiology and Biotechnology, 21, 1157-1163. https://doi.org/10.1007/s11274-005-0381-6

Rastogi, N., & Mathur, P. (2017). Ochrobactrum anthropi: An emerging pathogen causing meningitis with sepsis in a neurotrauma patient: Meningitis and sepsis by O. anthropi. The Journal of Infection in Developing Countries, 11(09), 733-735. https://doi.org/10.3855/jidc.9146

Rodríguez‐Llorente, I. D., Gamane, D., Lafuente, A., Dary, M., El Hamdaoui, A., Delgadillo, J., Doukkali, B., Caviedes, M. A., & Pajuelo, E. (2010). Cadmium biosorption properties of the metal‐resistant Ochrobactrum cytisi Azn6. 2. Engineering in Life Sciences, 10(1), 49-56. https://doi.org/10.1002/elsc.200900060

Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), Article e277. https://doi.org/10.3390/antiox10020277

Sharma, B., & Shukla, P. (2021). A comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. Bioresource Technology, 320, Article e124330. https://doi.org/10.1016/j.biortech.2020.124330

Tandon, S., Jha, M., & Dudhwadkar, S. (2020). Study on Ochrobactrum pseudintermedium ADV31 for the removal of hexavalent chromium through different immobilization techniques. SN Applied Sciences, 2, 1-9. https://doi.org/10.1007/s42452-020-2103-y

Tayang, A., & Songachan, L. S. (2021). Microbial bioremediation of heavy metals. Current Science, 120(6), Article e00113891. https://doi.org/10.18520/cs/v120/i6/1013-1025

Villagrasa, E., Palet, C., López-Gómez, I., Gutiérrez, D., Esteve, I., Sánchez-Chardi, A., & Solé, A. (2021). Cellular strategies against metal exposure and metal localization patterns linked to phosphorus pathways in Ochrobactrum anthropi DE2010. Journal of Hazardous Materials, 402, 123808. https://doi.org/10.1016/j.jhazmat.2020.123808

Whitman, W. B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B., Dedysh, S. (2018). Bergey's Manual of Systematics of Archaea and Bacteria. 1-25. https://doi.org/10.1002/9781118960608.gbm00809.pub2

Wu, Z., Peng, W., He, X., Wang, B., Gan, B., & Zhang, X. (2016). Mushroom tumor: a new disease on Flammulina velutipes caused by Ochrobactrum pseudogrignonense. FEMS Microbiology Letters, 363(2), Article fnv226. https://doi.org/10.1093/femsle/fnv226

Downloads

Published

2024-06-22

How to Cite

Komplikevych, S., Maslovska, O., Moravska, T., Yarmoliuk, I., Kulishko, N., Biront, N., Zaritska, Y., & Hnatush, S. (2024). Adaptation of Ochrobactrum rhizosphaerae IMV B-7956 Bacteria to the Influence of Copper (II) Chloride. Mikrobiolohichnyi Zhurnal, 86(3), 58-69. https://doi.org/10.15407/microbiolj86.03.058