Prospects of Liposomes Application in Agriculture

Authors

DOI:

https://doi.org/10.15407/microbiolj87.01.072

Keywords:

liposomes, phospholipids, delivery systems, drug delivery, farming industries, plant resistance to viruses

Abstract

Liposomes are artificially or spontaneously formed hollow structures whose contents are limited to a single, double, or multiple lipid membrane. Liposomes can be formed by amphiphilic substances encapsulating an aqueous solution of any substance under certain conditions. Liposomes have been very successfully used in the pharmaceutical, cosmetic, and food industries, but there is only limited information on the application of this technology in agriculture. Therefore, the purpose of the review is to summarize the information available since liposome discovery in the 1960s to date on the main properties of liposomes and their production technologies as well as analyze published data on the use of these supramolecular structures in agriculture, mainly as a means of storing, absorbing, and delivering pesticides or antiviral substances to plants.

Downloads

Download data is not yet available.

References

Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. Wo., Zargham, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale Res Letters, 8(1), 102. https://doi.org/10.1186/1556-276X-8-102

Andrade, S., Ramalho, M. J., Loureiro, J. A., & Pereira, M. C. (2021). Liposomes as biomembrane models: Biophysical techniques for drug-membrane interaction studies. Journal of Molecular Liquids, 334, 116141. https://doi.org/10.1016/j.molliq.2021.116141

Bangham, A. D., & Horne, R. W. (1964). Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents As Observed in the Electron Microscope. Journal of Molecular Biology, 8(5), 660-668. https://doi.org/10.1016/S0022-2836(64)80115-7

Betageri, G. V., & Kulkarni S. B. (1999). Preparation of liposomes. In: R. Arshady (Ed.), Microspheres, microcapsules and liposomes, 490-521. Citus Books, London, UK.

Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975-999. https://doi.org/10.2147/IJN.S68861

Brondi, M., Florencio, C., Mattoso, L., Ribeiro, C., & Farinas, C. (2022). Encapsulation of trichoderma harzianum with nanocellulose/carboxymethyl cellulose nanocomposite. Carbohydrate Polymers. 295, 119876. https://doi.org/10.1016/j.carbpol.2022.119876

Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. Pharmaceutics, 9, 12. https://doi.org/10.3390/pharmaceutics9020012

Chavda, V. P., Vihol, D., Mehta, B., Shah, D., Patel, M., Vora, L. K., Pereira-Silva, M., & Paiva-Santos, A. C. (2022). Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine (Lond), 17(8), 547-568. https://doi.org/10.2217/nnm-2021-0463

Cokmus, C., & Elcin, Y. M. (1995). Stability and controlled release properties of carboxymethylcellulose-encapsulated bacillus thuringiensis var. Israelensis. Journal of Pesticide Science, 45, 351-355. https://doi.org/10.1002/ps.2780450409

Decsi, K., Kutasy, B., Hegedűs, G., Alföldi, Z. P., Kálmán, N., Nagy, Á., & Virágb, E. (2023). Natural immunity stimulation using ELICE16INDURES® plant conditioner in field culture of soybean. Heliyon, 9(1), e12907. https://doi.org/10.1016/j.heliyon.2023.e12907

Dymek, M., Olechowska, K., Hąc-Wydro, K., & Sikora, E. (2023). Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics, 15(10), 2485. https://doi.org/10.3390/pharmaceutics15102485

Farshchi, H. K., Azizi. M., Teymouri, M., Nikpoor, A. R., & Jaafari, M. R. (2021). Synthesis and characterization of nanoliposome containing Fe2+ element: A superior nano-fertilizer for ferrous iron delivery to sweet basil. Scientia Horticulturae. 283, 110110. https://doi.org/10.1016/j.scienta.2021.110110

Fathi, F., Saberi-Riseh, R., & Khodaygan, P. (2021). Survivability and controlled release of alginate-microencapsulated pseudomonas fluorescens VUPF506 and their effects on biocontrol of rhizoctonia solani on potato. International Journal of Biological Macromolecules, 183, 627-634. https://doi.org/10.1016/j.ijbiomac.2021.04.159

Gao, A., Hu, X. L., Saeed, M., Chen, B., Li, Y., & Yu, H. (2019). Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacologica Sinica, 40, 1129-1137. https://doi.org/10.1038/s41401-019-0281-1

Gatto, M. S., Johnson, M. P., Najahi-Missaoui, W. (2024). Targeted Liposomal Drug Delivery: Overview of the Current Applications and Challenges. Life, 14, 672. https://doi.org/10.3390/life14060672

Gregoriadis, G. (2016). Liposomes in Drug Delivery: How It All Happened. Pharmaceutics, 8(2), 19. https://doi.org/10.3390/pharmaceutics8020019

Gregoriadis, G., & Ryman, B. E. (1972a). Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage disease. European Journal of Biochemistry, 24, 485-491. https://doi.org/10.1111/j.1432-1033.1972.tb19710.x

Gregoriadis, G., & Ryman, B. E. (1972b). Liposomal localisation of beta-fructofuranosidase-containing liposomes injected into rats. Some implications in the treatment of genetic disorders. Biochemical Journal, 129, 123-133. https://doi.org/10.1042/bj1290123

Gregoriadis, G., Leathwood, P. D., & Ryman, B. E. (1971). Enzyme entrapment in liposomes. FEBS Letters, 14, 95-99. https://doi.org/10.1016/0014-5793(71)80109-6

Gu, Z., Da Silva, C. G., Van der Maaden, K., Ossendorp, F., & Cruz, L. J. (2020). Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics, 12(11), 1054. https://doi.org/10.3390/pharmaceutics12111054

Hegedűs, G., Kutasy, B., Kiniczky, M., Decsi, K., Juhász, A., Nagy, A., Pallos, J. P., & Virág, E. (2022). Liposomal Formulation of Botanical Extracts may Enhance Yield Triggering PR Genes and Phenylpropanoid Pathway in Barley (Hordeum vulgare). Plants (Basel), 11(21), 2969. https://doi.org/10.3390/plants11212969

Himanshu, P., Radha, R., & Vishnu, A. (2016). Liposome and Their Applications in Cancer Therapy. Brazilian Archives of Biology and Technology, 59, e16150477. https://doi.org/10.1590/1678-4324-2016150477

Jamali, F., Sharifi-Tehrani, A., Okhovvat, M., Zakeri, Z., & Saberi-Riseh, R. (2004). Biological control of chickpea Fusarium wilt by antagonistic bacteria under greenhouse condition. Communications in agricultural and applied biological sciences, 69(4), 649-651.

Jíménez-Arias, D., Morales-Sierra, S., Silva, P., Carrêlo, H., Gonçalves, A., Ganança, J. F. T., Nunes, N., Gouveia, C. S. S., Alves, S,, Borges. J. P., & Pinheiro de Carvalho, M. Â. A. (2023). Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture. Plants, 12(1), 55. https://doi.org/10.3390/plants12010055

Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J., & Schroeder, A. (2018). Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Scientific Reports. 8, 7589. https://doi.org/10.1038/s41598-018-25197-y

Khan, I. N., Arshad, N., Shaheen, F., Shakoor, R., Hassan, A., & Waqar, M. A. (2024). Recent composition and applications of liposomes in cancer therapy. International Journal of Polymeric Materials and Polymeric Biomaterials, 1-13. https://doi.org/10.1080/00914037.2024.2368896

Kovalenko, O. G., Kyrychenko, A. M., Shepelevich, V. V., & Barkalova, А. O. (2006). Combined antiphytoviral effect of yeast mannan, some antimetabolites and xenobiotics. Dopovidi Nacionalʹnoi akademiï nauk Ukrainy, 3, 153-157. [In Ukrainian].

Kovalenko, O. G., Kirichenko, A. M., Shepelevich, V. V., Karpenko, O. V., Vildanova-Martchyshin, R. I., Scheglova, N. S. (2008). Complex preparations as means of plants recovery and protection against viral infections. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology. 51, 35-37.

Kovalenko, O. G., Vasilev, V. M., Adamchuk-Chala. N. I., Tytova, L. V., & Karpenko, E.V. (2017). Artificial glycan-glycolipid complexes as antiviral means and effectors of microbial formulation on the base of rhizobia. Dopovidi Nacionalʹnoi akademiï nauk Ukrainy, 1, 88-96. [In Ukrainian]. https://doi.org/10.15407/dopovidi2017.01.088

Kovalenko, O., Kyrychenko, A., & Kovalenko, O. (2019). Callus cultures of beans infected with virus as a model for testing antiviral compounds. Journal of Botanical Research, 1(2), 19-24. https://doi.org/10.30564/jrb.v1i2.1252

Kovalenko, O. G., Vasilev, V. M., Adamchuk-Chala, N. I., Tytova, L. V., & Karpenko E. V. (2022). Antiviral agents and biological preparations for agriculture based on artificial glycan-glycolipid complexes. Journal of Ethology & Animal Science, 4, 123. https://doi.org/10.23880/jeasc-16000123

Kovalenko, O., Kyrychenko, A., Lubenets, V., Pokynbroda, T., Banya, А., Chervetsova, V., & Karpenko, O. (2023). Thiosulphonate-rhamnolipid-glycanic complexes as inducers of virus resistance in hypersensitive plants. Biologia Plantarum, 67, 159-165. https://doi.org/10.32615/bp.2023.014

Kutasy, B., Decsi, K., Kiniczky, M., Hegedűs, G., & Virág, E. (2022). Time-course gene expression profiling data of Triticum aestivum treated by supercritical CO2 garlic extract encapsulated in nanoscale liposomes. Data Brief, 42, 108287. https://doi.org/10.1016/j.dib.2022.108287

Lasic, Danilo D. (2000). Giant Vesicles: a Historical Introduction. In: P. Luigi Luisi, & P. Walde (Eds.), Perspectives in Supramolecular Chemistry: Giant Vesicles, 11-24. John Wiley, New York, USA. https://doi.org/10.1002/9780470511534.ch2

Lian, T., & Ho, R. J. (2001). Trends and developments in liposome drug delivery systems. Journal of Pharmaceutical Sciences, 90, 667 - 680. https://doi.org/10.1002/jps.1023

Lombardo, D., & Kiselev, M. A. (2022). Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics, 14(3), 543. https://doi.org/10.3390/pharmaceutics14030543

Magar, K. T., George, B., Xiaotong, Li, Chen, Zh., & He, W. (2022). Liposome-based delivery of biological drugs. Chinese Chemical Letters, 33(2), 587-596. https://doi.org/10.1016/j.cclet.2021.08.020

Mishra, A., Saini, R. K., & Bajpai, A. K. (2020). Polymer Formulations for Pesticide Release. In S. Thomas, T. K. J. Volova (Eds.), Controlled Release of Pesticides for Sustainable Agriculture, 185-206. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-23396-9_8

New, R. R. C. (Ed.), (1990). Liposomes - a practical approach. Oxford: IRL at Oxford University Press, UK.

Olusanya, T. O. B., Haj Ahmad, R. R., Ibegbu, D. M., Smith, J. R, & Elkordy, A. A. (2018). Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules, 23(4), 907. https://doi.org/10.3390/molecules23040907

Pamunuwa, G. K., & Karunaratne, D. N. (2022). Liposomal Delivery of Plant Bioactives Enhances Potency in Food Systems: A Review. Journal Of Food Quality, 4, 1-11. https://doi.org/10.1155/2022/5272592

Reineccius, G. (1995). Liposomes for controlled release in the food industry. In: S. Risch & G. Reineccius (Eds.), Encapsulation and controlled release of food ingredients, 113-131. Washington, DC: American Chemical Society. https://doi.org/10.1021/bk-1995-0590.ch011

Rommasi, F., & Esfandiari, N. (2021). Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Research Letters, 16, 95. https://doi.org/10.1186/s11671-021-03553-8

Rudzińska, M., Grygier, A., Knight, G., & Kmiecik, D. (2024). Liposomes as Carriers of Bioactive Compounds in Human Nutrition. Foods, 13(12), 1814. https://doi.org/10.3390/foods13121814

Saberi Riseh, R., Gholizadeh Vazvani, M., Hassanisaadi, M., & Skorik, Y. A. (2023b). Micro-/Nano-Carboxymethyl Cellulose as a Promising Biopolymer with Prospects in the Agriculture Sector: A Review. Polymers, 15(2), 440. https://doi.org/10.3390/polym15020440

Saberi Riseh, R., Hassanisaadi, M., Vatankhah, M., & Kennedy, J. F. (2023a). Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydrate Polymers, 302, 120384. https://doi.org/10.1016/j.carbpol.2022.120384

Saberi Riseh, R., Hassanisaadi, M., Vatankhah, M., Soroush, F., & Varma, R. S. (2022). Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. International Journal of Biological Macromolecules, 222(Pt A), 1589-1604. https://doi.org/10.1016/j.ijbiomac.2022.09.278

Saberi-Riseh, R., Hajieghrari, B., Rouhani, H., & Sharifi-Tehrani, A. (2004). Effects of inoculum density and substrate type on saprophytic survival of Phytophthora drechsleri, the causal agent of gummosis (crown and root rot) on pistachio in Rafsanjan, Iran. Communications in agricultural and applied biological sciences, 69(4), 653-656.

Shao, C., Zhao, H., & Wang, P. (2022). Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. Nano Convergence, 9, 11. https://doi.org/10.1186/s40580-022-00302-0

Singh, H., Thompson, A., Liu, W., & Corredig, M. (2012). Liposomes as food ingredients and nutraceutical delivery systems. In N. Garti, D. J. McClements (Eds.), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, 287-318. Woodhead Publishing, Cambrige. https://doi.org/10.1533/9780857095909.3.287

Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7-8), 587-605. https://doi.org/10.1080/10408390591001135

Trucillo, P., Campardelli, R., & Reverchon, E. (2020). Liposomes: From Bangham to Supercritical Fluids. Processes, 8, 1022. https://doi.org/10.3390/pr8091022

Vejan, P., Khadiran, T., Abdullah, R., & Ahmad, N. (2021). Controlled Release Fertilizer: A Review on Developments, Applications and Potential in Agriculture. Journal of Controlled Release, 339, 321-334. https://doi.org/10.1016/j.jconrel.2021.10.003

Wang, Y. L., Stork, J., & Nagy, P. D. (2009). A key role for heat shock protein 70 in the localization and insertion of tombusvirus replication proteins to intracellular membranes. Journal of Virology, 83, 3276-3287. https://doi.org/10.1128/JVI.02313-08

Wang. J., Hao, K., Yu, F., Shen, L., Wang, F., Yang, J., & Su, Ch. (2022). Field application of nanoliposomes delivered quercetin by inhibiting specific hsp70 gene expression against plant virus disease. Journal of Nanobiotechnology, 20(1), 16. https://doi.org/10.1186/s12951-021-01223-6

Zabot, G. L., Schaefer Rodrigues, F., Polano Ody, L., Vinícius Tres, M., Herrera, E., Palacin, H., Córdova-Ramos, J. S., Best, I., & Olivera-Montenegro, L. (2022). Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel). 14(19), 4194. https://doi.org/10.3390/polym14194194

Zeisig, R., & Cämmerer, B. (2001). Liposomes in the food industry. In P. Vilstrup (Ed.), Microencapsulation of Food Ingredient, 101-119. Leatherhead Publishing, London, UK.

Downloads

Published

2025-02-25

How to Cite

Kyrychenko, A., & Kovalenko, O. (2025). Prospects of Liposomes Application in Agriculture. Mikrobiolohichnyi Zhurnal, 87(1), 72-82. https://doi.org/10.15407/microbiolj87.01.072