Combined Effects of TLR4 and HIF-1α with COX-2 Genes in Cervical Squamous Cell Carcinoma Associated with HPV Infection
DOI:
https://doi.org/10.15407/microbiolj86.06.055Keywords:
HPV, COX-2, TLR4, HIF-1α, cervical cancerAbstract
Molecular techniques are used for the detection of HPV-related cervical cancer. An average of 48 million instances of cervical cancer are reported each year, 80 % of which occur in developing countries. Aim. To study the correlation of HPV16, HPV18, and HPV 31 genotypes with cervical cancer tissues, and their effects on the expression levels of TLR4, HIF-1α, and COX-2 genes in infected women. Methods. 35 samples were collected from women with cervical squamous cell carcinoma and 30 - from women with normal cervical tissues. Subsequently subjected to HPV genotyping and expression levels of TLR4 and HIF-1α with COX-2 genes were analyzed using a real-time polymerase chain reaction. Results. Molecular detection showed the presence of HPV16, HPV18, and HPV31 genotypes in tested samples. 25 (71.42%) of 35cases containing cervical carcinoma are associated with high-risk HPV, while the other 10 (28.57 %) are associated with low-risk HPV genotypes. The result showed elevation in the levels of gene expression 1.52, 48.0, and 28.8 fold in TLR4 and HIF-1α with COX-2, respectively, in positive HPV-tested cervical cancer samples compared to its values with the housekeeping gene (β actin) to 1 as control characterized by lower expression of target genes. Conclusions. The study indicates that TLR4 and HIF-1α with COX-2 genes are overexpressed in cervical squamous cell carcinoma linked to HPV, which has been reported in all diagnosed cases.
Downloads
References
Bell, C. R., Pelly, V. S., Moeini, A., Chiang, S. C., Flanagan, E., Bromley, C. P., et al., (2022). Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations. Nat Commun, 13(1), 2063. https://doi.org/10.1038/s41467-022-29606-9
Chen, X., Zhang, Y., & Fu, Y. (2022). The critical role of Toll-like receptor-mediated signaling in cancer immunotherapy. Med Drug Discov, 14, 100122. https://doi.org/10.1016/j.medidd.2022.100122
Cruz‐Gregorio, A., & Aranda‐Rivera, A. K. (2021). Redox‐sensitive signalling pathways regulated by human papillomavirus in HPV‐related cancers. Rev Med Virol, 31(6), e2230. https://doi.org/10.1002/rmv.2230
de Moraes, E., Dar, N. A., de Moura Gallo, C. V., & Hainaut, P. (2007). Cross‐talks between cyclooxygenase‐2 and tumor suppressor protein p53: balancing life and death during inflammatory stress and carcinogenesis. Int J Cancer, 121(5), 929-937. https://doi.org/10.1002/ijc.22899
Deguchi, A., Watanabe-Takahashi, M., Mishima, T., Omori, T., Ohto, U., Arashiki, N., et al. (2023). Novel multivalent S100A8 inhibitory peptides attenuate tumor progression and metastasis by inhibiting the TLR4-dependent pathway. Cancer Gene Ther, 1-12. https://doi.org/10.1038/s41417-023-00604-3
El-Zayat, S. R., Sibaii, H., & Mannaa, F. A. (2019). Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent, 43(1), 1-12. https://doi.org/10.1186/s42269-019-0227-2
Feng, L., Lintula, S., Ho, T. H., Anastasina, M., Paju, A., Haglund, C., et al. (2012). Technique for strand-specific gene-expression analysis and monitoring of primer-independent cDNA synthesis in reverse transcription. Biotechniques, 52(4), 263-270. https://doi.org/10.2144/0000113842
Gandhi, J., Khera, L., Gaur, N., Paul, C., & Kaul, R. (2017). Role of modulator of inflammation cyclooxygenase-2 in gammaherpesvirus mediated tumorigenesis. Front Microbiol, 8, 538. https://doi.org/10.3389/fmicb.2017.00538
Haręża, D. A., Wilczyński, J. R., & Paradowska, E. (2022). Human papillomaviruses as infectious agents in gynecological cancers. Oncogenic properties of viral proteins. nt. J Mol Sci, 23(3), 1818. https://doi.org/10.3390/ijms23031818
Harris, B., Saleem, S., Cook, N., & Searle, E. (2022). Targeting hypoxia in solid and haematological malignancies. J Exp Clin Cancer Res, 41(1), 318. https://doi.org/10.1186/s13046-022-02522-y
Jiang, N., Xie, F., Chen, L., Chen, F., & Sui, L. (2020). The effect of TLR4 on the growth and local inflammatory microenvironment of HPV-related cervical cancer in vivo. Infect Agent Cancer, 15, 1-10. https://doi.org/10.1186/s13027-020-0279-9
Kombe, A. J., Li, B., Zahid, A., Mengist, H. M., Bounda, G. A., Zhou, Y., & Jin, T. (2021). Epidemiology and burden of human papillomavirus and related diseases, molecular pathogenesis, and vaccine evaluation. Front Public Health, 8, 552028. https://doi.org/10.3389/fpubh.2020.552028
Mitra, A., MacIntyre, D. A., Marchesi, J. R., Lee, Y. S., Bennett, P. R., & Kyrgiou, M. (2016). The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome, 4, 1-15. https://doi.org/10.1186/s40168-016-0203-0
Morale, M. G., Tamura, R. E., Cintra, R., Araújo, N. M., & Villa, L. L. (2022). TLR4 and SARM1 modulate survival and chemoresistance in an HPV-positive cervical cancer cell line. Sci Rep 12(1), 6714. https://doi.org/10.1038/s41598-022-09980-6
Mu, J., Wang, Y., Wang, M., Zhang, D., & Liu, M. (2023). Identification of reliable reference genes for gene expression studies in mouse models under microplastics stress. Ecotoxicol Environ Saf, 252, 114569. https://doi.org/10.1016/j.ecoenv.2023.114569
Nikolic, N., Basica, B., Mandic, A., Surla, N., Gusman, V., Medic, D., et al.(2023). E6/E7 mRNA Expression of the Most Prevalent High-Risk HPV Genotypes in Cervical Samples from Serbian Women. Diagnostics, 13(5), 917. https://doi.org/10.3390/diagnostics13050917
Peng, X., Gao, H., Xu, R., Wang, H., Mei, J., & Liu, C. (2020). The interplay between HIF-1α and noncoding RNAs in cancer. J Exp Clin, 39(1), 1-19. https://doi.org/10.1186/s13046-020-1535-y
Priego-Hernández, V. D., Arizmendi-Izazaga, A., Soto-Flores, D. G., Santiago-Ramón, N., Feria-Valadez, M. D., Navarro-Tito, N., et al. (2022). Expression of HIF-1α and Genes Involved in Glucose Metabolism Is Increased in Cervical Cancer and HPV-16-Positive Cell Lines. Pathogens, 12(1), 33. https://doi.org/10.3390/pathogens12010033
Sen, P., Ganguly, P., & Ganguly, N. (2018). Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncology letters, 15(1), 11-22. https://doi.org/10.3892/ol.2017.7292
Shayan, S. J., Nazari, R., & Kiwanuka, F. (2021). Prevalence of HIV and HCV among injecting drug users in three selected WHO-EMRO countries: a meta-analysis. Harm reduction journal, 18(1), 59. https://doi.org/10.1186/s12954-021-00505-4
Steinbach, A., & Riemer, A. B. (2018). Immune evasion mechanisms of human papillomavirus: An update. Int J Cancer, 142(2), 224-229. https://doi.org/10.1002/ijc.31027
Szweda, M., Rychlik, A., Babińska, I., & Pomianowski, A. (2019). Significance of cyclooxygenase-2 in oncogenesis. J Vet Med, 63(2), 215. https://doi.org/10.2478/jvetres-2019-0030
Vaupel, P., Flood, A. B., & Swartz, H. M. (2021). Oxygenation status of malignant tumors vs. normal tissues: Critical evaluation and updated data source based on direct measurements with pO2 microsensors. Appl Magn Reson, 52(10), 1451-1479. https://doi.org/10.1007/s00723-021-01383-6
Wang, X., Song, Y., Wei, X., Wang, G., Sun, R., Wang, M., & Zhao, L. (2022). Prevalence and distribution of human papillomavirus genotypes among women attending gynecology clinics in northern Henan Province of China. Virol J, 19(1), 6. https://doi.org/10.1186/s12985-021-01732-8
Williams, C. S., Mann, M., & DuBois, R. N. (1999). The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18(55), 7908-7916. https://doi.org/10.1038/sj.onc.1203286
Xiong, J., Nie, M., Fu, C., Chai, X., Zhang, Y., He, L., & Sun, S. (2022). Hypoxia enhances HIF1α transcription activity by upregulating KDM4A and mediating H3K9me3, thus inducing ferroptosis resistance in cervical cancer cells. Stem Cells Int, 2022. https://doi.org/10.1155/2022/1608806
Yang, X., Chen, G. T., Wang, Y. Q., Xian, S., Zhang, L., Zhu, S. M., et al. (2018). TLR4 promotes the expression of HIF-1α by triggering reactive oxygen species in cervical cancer cells in vitro-implications for therapeutic intervention. Mol Med Rep, 17(2), 2229-2238. https://doi.org/10.3892/mmr.2017.8108
Yang, X., Cheng, Y., & Li, C. (2017). The role of TLRs in cervical cancer with HPV infection: a review. SO 4, 2(1), 1-10. https://doi.org/10.1038/sigtrans.2017.55
Yim, E. K., & Park, J. S. (2005). The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer research and treatment: official journal of Korean Cancer Association, 37(6), 319. https://doi.org/10.4143/crt.2005.37.6.319
Yu, H., Yi, J., Dou, Y. L., Chen, Y., Kong, L. J., & Wu, J. (2021). Prevalence and genotype distribution of human papillomavirus among healthy females in Beijing, China, 2016-2019. Infect Drug Resist, 4173-4182. https://doi.org/10.2147/IDR.S332668
Zhang, T., Yang, J., Sun, Y., Song, J., Gao, D., Huang, S., et al. (2023). Interleukin-6 and Hypoxia Synergistically Promote EMT-Mediated Invasion in Epithelial Ovarian Cancer via the IL-6/STAT3/HIF-1α Feedback Loop. Anal Cell Pathol, 2023. https://doi.org/10.1155/2023/8334881
Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther, 6(1), 263. https://doi.org/10.1038/s41392-021-00658-5
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mikrobiolohichnyi Zhurnal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.