Probiotics and Their Potential for the Prevention and Treatment of Infections

Authors

  • L.A. Safronova Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • Y.V. Pylypiuk Poltava State Medical University, 23 Shevchenko Str., Poltava, 36011, Ukraine
  • I.O. Skorochod Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • Z.M. Polova Bogomolets National Medical University, 22 Yevhena Chykalenka Str., Kуiv, 01004, Ukraine

DOI:

https://doi.org/10.15407/microbiolj86.06.074

Keywords:

probiotic microorganisms, microbiome, biological effects, Bacillus, biologically active metabolites, infectious diseases, antibiotic resistance, methicillin-resistant Staphylococcus aureus

Abstract

The study of the properties of probiotic microorganisms is currently a relevant area in microbiology, biotechnology and medicine, which expands our knowledge of the evolution of their relationship with the human body and its microbiome, and also opens up new prospects for the practical use of active probiotic strains to maintain health and prevent and treat various pathological conditions. The review provides data on the known biological effects of probiotics, characterized mechanisms of the body's relationship with probiotic microorganisms, and highlighted their role in improving immunological status. Particular attention is paid to the possibilities of practical use of probiotic microorganisms, particularly strains of the genus Bacillus, for the treatment of infectious diseases. The results of studies confirming the effectiveness of probiotic strains against pathogenic microorganisms are presented.

Downloads

Download data is not yet available.

References

Abriouel, H., Franz, C. M., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol, 35(1), 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x

Afsharmanesh, H., Perez-Garcia, A., Zeriouh, H., Ahmadzadeh, M., & Romero, D. (2018). Aflatoxin degradation by Bacillus subtilis UTB1 is based on production of an oxidoreductase involved in bacilysin biosynthesis. Food Control, 94, 48-55. https://doi.org/10.1016/j.foodcont.2018.03.002

Ahire, J. J., Kashikar, M. S., Lakshmi, S. G., & Madempudi, R. (2020). Identification and characterization of antimicrobial peptide produced by indigenously isolated Bacillus paralicheniformis UBBLi30 strain. 3Biotech, 10(3), 112-113. https://doi.org/10.1007/s13205-020-2109-6

Al Atya, A. K., Belguesmia, Y., Chataigne, G., Ravallec, R., Vachée, A., Szunerits, S., Boukherroub, R., & Drider D. (2016). Anti-MRSA activities of enterocins DD28 and DD93 and evidences on their role in the inhibition of biofilm formation. Front Microbiol, 7, 817. https://doi.org/10.3389/fmicb.2016.00817

Algburi, A., Al-Hasani, H., Ismael, T., Abdelhameed, A., Weeks, R., Ermakov, A., & Chikindas, M. (2020). Antimicrobial activity of Bacillus subtilis KATMIRA 1933 and Bacillus amyloliquefaciens B-1895 against Staphylococcus aureus biofilms isolated from wound infection. Probiotics and antimicrobial proteins, 13(1), 125-134. https://doi.org/10.1007/s12602-020-09673-4

Amabebe, E., & Anumba, D. (2018). The vaginal microenvironment: the physiologic role of Lactobacilli. Front Med (Lausanne), 5, 181. https://doi.org/10.3389/fmed.2018.00181

Anukam, K., Hayes, K., Summers, K., & Reid, G. (2009). Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: a two-case study. Adv Urol, 680363. https://doi.org/10.1155/2009/680363

Aponte, M., Murru, N., & Shoukat, M. (2020). Therapeutic, prophylactic and functional use of probiotics: a current perspective. Front Microbiol, 11, 1-16. https://doi.org/10.3389/fmicb.2020.562048

Argenta, A., Satish, L., Gallo, P., Liu, F., & Kathju, S. (2016). Local application of probiotic bacteria prophylaxes against sepsis and death resulting from burn wound infection. PLoS One, 11(10), e0165294. https://doi.org/10.1371/journal.pone.0165294

Aw, W., & Fukuda, S. (2019). Protective effects of Bifidobacteria against enteropathogens. Microbial Biotechnology, 12(6), 1097-1100. https://doi.org/10.1111/1751-7915.13460

Barzegari, A., Kheyrolahzadeh, K., Khatibi, S., Sharifi, S., Memar, M., & Vahed, S. (2020). The battle of probiotics and their derivatives against biofilms. Infection and Drug Resistance, 13, 659-672. https://doi.org/10.2147/IDR.S232982

Bierbaum, G., & Sahl, H.-G. (2009). Lantibiotics: mode of action, biosynthesis and bioengineering. Current Pharmaceutical Biotechnology, 10(1), 2-18. https://doi.org/10.2174/138920109787048616

Boopathi, S., Selvakumar, G., & Sivakumar, N. (2017). Quorumquenching potentials of probiotic Enterococcus duransLAB38 against methicillin resistant Staphylococcus aureus. Asian Journal of Pharmaceutical and Clinical Research, 10(4), 445. https://doi.org/10.22159/ajpcr.2017.v10i4.17039

Borges, S., Barbosa, J., Silva, J., & Teixeira, P. (2013). Evaluation of characteristics of Pediococcus spp. to be used as a vaginal probiotic. J Appl Microbiol, 115(2), 527-538. https://doi.org/10.1111/jam.12232

Boyko, V., Kravtsov, O., Lykhman, V., & Kravtsova, O. (2022). [Local treatment of burn wounds with the use of probiotics]. Kharkiv Surgical School, 4(5), 6-10. [In Ukrainian]. https://doi.org/10.37699/2308-7005.4-5.2022.01

Braïek, O., Merghni, A., Smaoui, S., & Mastouri, M. (2019). Enterococcus lactis Q1 and 4CP3 strains from raw shrimps: potential of antioxidant capacity and anti-biofilm activity against methicillin-resistant Staphylococcus aureus strains. LWT, 102, 15-21. https://doi.org/10.1016/j.lwt.2018.11.095

Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16, 143-155. https://doi.org/10.1038/nrmicro.2017.157

Carducci, A., Verani, M., Lombardi, R., Casini, B., & Privitera, G. (2011). Environmental survey to assess viral contamination of air and surfaces in hospital settings. Journal of Hospital Infection, 77(3), 242-247. https://doi.org/10.1016/j.jhin.2010.10.010

Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis. Group Front Microbiol, 10, 302. https://doi.org/10.3389/fmicb.2019.00302

Ceccarani, C., Foschi, C., Parolin, C., D'Antuono, A., Gaspari, V., Consolandi, C., Laghi, L., Camboni, T., Vitali, B., Severgnini, M., & Marangoni, A. (2019). Diversity of vaginal microbiome and metabolome during genital infections. Sci Rep, 9, 14095. https://doi.org/10.1038/s41598-019-50410-x

Chamignon, C., Guéneau, V., Medina, S., Dechamps, J., Gil-Izquerdo, A., Briandet, R., Py, M., Langella, Ph., Lafay, S., & Bermúdez-Humarán, L. (2020). Evaluation of the probiotic properties and the capacity to form biofilms of various lactobacillus strains. Microorganisms, 8(7), 1053. https://doi.org/10.3390/microorganisms8071053

Chung, P., & Toh, Y. (2014). Anti-biofilm agents: recent break through against multi-drug resistant Staphylococcus aureus. Pathogens and Disease, 70(3), 231-239. https://doi.org/10.1111/2049-632X.12141

Cicinelli, E., Ballini, A., Marinaccio, M., Poliseno, A., Coscia, M. F., Monno, R., & de Vito, D. (2012). Microbiological findings in endometrial specimen: our experience. Arch Gynecol Obstet, 285(5), 1325-9. https://doi.org/10.1007/s00404-011-2138-9

Ciorba, M. (2012). A gastroenterologist's guide to probiotics. Clinical gastroenterology and hepatology, 10(9), 960-8. https://doi.org/10.1016/j.cgh.2012.03.024

Corvey, C., Stein, T., Dusterhus, S., Karas, M., & Entian, K.-D. (2003). Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem Biophys Res Commun, 304(1), 48-54. https://doi.org/10.1016/S0006-291X(03)00529-1

Cotter, P., Hill, C., & Ross, R. (2005). Bacterial lantibiotics: strategies to improve therapeutic potential. Current Proteinand Peptide Science, 6(1), 61-75. https://doi.org/10.2174/1389203053027584

Das, T., Pradhana, S., Chakrabartia, S., Mondalb, K., & Ghosha, K. (2022). Current status of probiotic and related health benefits. Applied Food Research, 2(2), 100185. https://doi.org/10.1016/j.afres.2022.100185

De Gregorio, P., Silva, J., Marchesi, A. & Nader-Macias, M. (2019). Anti-Candida activity of beneficial vaginal lactobacilli in in vitro assays and in a murine experimental model. FEMS Yeast Res, 19(2). https://doi.org/10.1093/femsyr/foz008

De Preter, V., Hamer, H., Windey, K., & Verbeke, K. (2011). The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health? Mol Nutr Food Res, 55(1), 46-57. https://doi.org/10.1002/mnfr.201000451

Dufour, D., Leung, V., & Lévesque, C. (2010). Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics, 22(1), 2-16. https://doi.org/10.1111/j.1601-1546.2012.00277.x

El-Ghazely, M. H., Mahmoud, W. H., Atia, M. A., & Eldip, E. M. (2016). Effect of probiotic administration in the therapy of pediatric thermal burn. Ann Burns Fire Disasters, 29(4), 268-272.

Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol, 10, 8, 1490. https://doi.org/10.3389/fmicb.2017.01490

Fickers, P. (2012). Antibiotic compounds from Bacillus: why are they so amazing? Amer J Biochemand Biotechnol, 8(1), 40-46. https://doi.org/10.3844/ajbbsp.2012.40.46

Field, D., Cotter, P. D., Hill, C., & Ross, R. P. (2015). Bioengineering Lantibiotics for therapeutic success. Front Microbiol, 6, 1363. https://doi.org/10.3389/fmicb.2015.01363

Field, D., O'Connor, R., Cotter, P., Ross, R., & Hill, C. (2016). In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 7, 508. https://doi.org/10.3389/fmicb.2016.00508

Fijan, S., Frauwallner, A., Langerholc, T., Krebs, B., Ter Haar Née Younes, J., Heschl, A., Mičetić Turk, D. & Rogelj, I. (2019). Efficacy of using probiotics with antagonistic activity against pathogens of wound infections: an integrative review of literature. Biomed Res Int, 7585486. https://doi.org/10.1155/2019/7585486

Fijan, S., Kocbek, P., Steyer, A., Vodičar, P., & Strauss, M. (2022). The antimicrobial effect of various single-strain and multi-strain probiotics, dietary supplements or other beneficial microbes against common clinical wound pathogens. Microorganisms, 10(12), 2518. https://doi.org/10.3390/microorganisms10122518

Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol, 13(5), 269-284. https://doi.org/10.1038/nrmicro3432

Fu,Y., Dou, Q., Smalla, K., Wang, Y., Johnson, T. A., Brandt, K. K., Mei, Z., Liao, M., Hashsham, S. A., Schäffer, A., Smidt, H., Zhang, T., Li, H., Stedtfeld, R., Sheng, H., Chai, B., Virta, M., Jiang, X., Wang, F., Zhu, Y.-G., & Tiedje, J. M. (2023). Gut microbiota research nexus: One Health relationship between human, animal, andenvironmental resistomes. mLife, 2, 350-364. https://doi.org/10.1002/mlf2.12101

Gagliardi, А., Totino, V., Cacciotti, F., Iebba, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C., Pantanella, F., & Schippa, S. (2018). Rebuilding thegut microbiota ecosystem. Int J Environ Res Public Health, 15(8), 1679. https://doi.org/10.3390/ijerph15081679

Gill, S. R., Pop, M., De Boy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312(5778), 1355-1359. https://doi.org/10.1126/science.1124234

Giudice, G., Cutrignelli, D. A., Sportelli, P., Limongelli, L., Tempesta, A., Gioia, G. D., Santacroce, L., Maiorano, E., & Favia, G. (2016). Rhinocerebral mucormycosis with orosinusal involvement: diagnostic and surgical treatment guidelines. Endocr Metab Immune Disord Drug Targets, 16(4), 264-269. https://doi.org/10.2174/1871530316666161223145055

Gómez, N., Abriouel, H., Grande, M., Pulido, R. & Gálvez, A. (2013). Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive andmethicillin-resistant Staphylococcus aureus planktonic and sessile cells. International journal of Food Microbiology, 163(2-3), 96-100. https://doi.org/10.1016/j.ijfoodmicro.2013.02.018

Guarner, F., Bourdet-Sicard, R., Brandtzaeg, P., Gill, H. S., McGuirk, P., van Eden, W., Versalovic, J., Weinstock, J. V., & Rook, G. A. (2006). Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol, 3(5), 275-284. https://doi.org/10.1038/ncpgasthep0471

Hanson, L., Vande Vusse, L., Jermé, M., Abad, C. L., & Safdarv, N. (2016). Probiotics for treatment and prevention of urogenital infections in women: asystematic review. J Midwifery Womens Health, 61(3), 339-355. https://doi.org/10.1111/jmwh.12472

Høiby, N. (2017). A short history of microbial biofilms and biofilm infections. APMIS, 125(4), 272-275. https://doi.org/10.1111/apm.12686

Javanshir, N., Nayeb, G., Hosseini, G., Sadeghi, M., Esmaeili, R., Satarikia, F., Ahmadian, G., & Allahyari, N. (2021). Evaluation of the function of probiotics, emphasizing the role of their binding to the intestinal epithelium in the stability and their effects on the immune system. Biological Procedures Online, 23, 23. https://doi.org/10.1186/s12575-021-00160-w

John, A. S., Mboto, C. I., & Agbo, B. (2016). A review of the prevalence and predisposing factors responsible for urinary tract infection among adults. Euro J Exp Bio, 6(4), 7-11.

Jones, M. L., Tomaro-Duchesneau, C., Martoni, C. J., & Prakash, S. (2013). Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin Biol Ther, 28, 1156-1168. https://doi.org/10.1517/14712598.2013.758706

Jones, M. L., Martoni, C. J., Ganopolsky, J. G., Labbe, A., & Prakash, S. (2014). The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin Biol Ther, 14(4), 467-482. https://doi.org/10.1517/14712598.2014.880420

Johnson, T. R., Gómez, B. I., McIntyre, M. K., Dubick, M. A., Christy, R. J., Nicholson, S. E., & Burmeister, D. M. (2018). The cutaneous microbiome and wounds: new molecular targets to promote wound healing. International Journal of Molecular Sciences, 19(9), 2699. https://doi.org/10.3390/ijms19092699

Joshi, S., Mumtaz, S., Singh, J., Pasha, S., & Mukhopadhyay, K. (2018). Novel miniature membrane active lipopeptidomimetics against planktonic and biofilm embedded methicillin-resistant Staphylococcus aureus. Scientific Reports, 8(1), 1021. https://doi.org/10.1038/s41598-017-17234-z

Khatri, I., Sharma, G., & Subramanian, S. (2019). Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol, 19, 307. https://doi.org/10.1186/s12866-019-1680-7

Kim, P. I., Ryu, J., Kim, Y. H., & Chi, Y.-T. (2010). Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of colletotrichum gloeosporioides. J Microbiol Biotechnol, 20, 138-45. https://doi.org/10.4014/jmb.0905.05007

Kimelman, H., & Shemesh, M. (2019). Probiotic bifunctionality of Bacillus subtilis-rescuing lactic acid bacteria from desiccation and antagonizing pathogenic Staphylococcus aureus. Microorganisms, 7(10), 407. https://doi.org/10.3390/microorganisms7100407

Kos, B., Šušković, J., Vuković, S., Šimpraga, M., Frece, J., & Matošić, S. (2003). Adhesion and aggregation ability of probioticstrain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94(6), 981-987. https://doi.org/10.1046/j.1365-2672.2003.01915.x

Kumar, L., Saad, W., Mohamad, R., & Rahim, R. (2017). Influence of biofilm-forming lactic acid bacteria against methicillin-resistant Staphylococcus aureus (MRSA S547). Asian Pacific Journal of Tropical Biomedicine, 7(12), 1107-1115. https://doi.org/10.1016/j.apjtb.2017.10.013

Li, C., Bei, T., Niu, Z., Guo, X., Wang, M., Lu, H., Gu, X., & Tian, H. (2019). Adhesion and colonization of the probiotic Lactobacillus rhamnosus labeled by dsred2 in mouse gut. Curr Microbiol, 76(7), 896-903. https://doi.org/10.1007/s00284-019-01706-8

Lipsky, B., Berendt, A., Cornia, P., Pile, J., Peters, E., Armstrong, D., Deery, H., Embil, J., Joseph, W., Karchmer, A., Pinzur, M., & Senneville, E. (2012). Infectious diseases society of America. Executive summary: 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis, 54(12), 1679-84. https://doi.org/10.1093/cid/cis460

Liu, Y., Tran, D., & Rhoads, J. (2018). Probiotics in disease prevention and treatment. Journal of Clinical Pharmacology, 58(10), 164-179. https://doi.org/10.1002/jcph.1121

Lu, S., Na, K., Li, Y., Zhang, L., Fang, Y., & Guo, X. (2022). Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr, 6, 1-14. https://doi.org/10.1080/10408398.2022.2118659

Maan, H., Itkin, M., Malitsky, S., Friedman, J., & Kolodkin-Ga, I. (2022). Resolving the conflict between antibiotic production and rapid growth by recognition of peptidoglycan of susceptible competitors. Nat Commun, 13(1), 431. https://doi.org/10.1038/s41467-021-27904-2

Marin, I., Goertz, J., Ren, T., Rich, S. S., Onengut-Gumuscu, S., Farber, E., Wu, M., Overall, C. C., Kipnis, J., & Gaultier, A. (2017). Microbiota alteration is associated with the development of stress-induced despair behavior. Scientific Reports, 7, 43859. https://doi.org/10.1038/srep43859

Marrelli, M., Tatullo, M., Dipalma, G., & Inchingolo, F. (2012). Oral infection by Staphylococcus aureus in patients affected by White Sponge Nevus: a description of two cases occurred in the same family. Int J Med Sci, 9(1), 47-50. https://doi.org/10.7150/ijms.9.47

Martin, F., Wang, Y., Sprenger, N., Yap, I., Lundstedt, T., Lek, P., Rezzi, S., Ramadan, Z., van Bladeren, P., Fay, L., Kochhar, S., Lindon, J., Holmes, E. & Nicholson, J. (2008). Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol, 4, 157. https://doi.org/10.1038/msb4100190

Маtseliukh, E. V., Safronova, L. А., & Varbanets, L. D. (2015). Bacillus amyloliquefaciens subsp. plantarum probiotic strains as protease producers. Biotechnologia acta, 8(2), 84-90. https://doi.org/10.15407/biotech8.02.084

Meroni, G. (2021). Probiotics as therapeutic tools against pathogenic biofilms: have we found the perfect weapon? Microbiol Res, 12, 916-937. https://doi.org/10.3390/microbiolres12040068

Miller, E., Beasley, D., Dunn, R., & Archie, E. (2016). Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front Microbiol, 7, 1936. https://doi.org/10.3389/fmicb.2016.01936

Mirzaei, R., & Ranjbar, R. (2022). Hijacking host components for bacterial biofilm formation: an advanced mechanism. International Immunopharmacology, 103, 108471. https://doi.org/10.1016/j.intimp.2021.108471

Mirzaei, R., Abdi, M., & Gholami, H. (2020a). The host metabolism following bacterial biofilm: what is the mechanism of action? Reviews in Medical Microbiology, 4, 175-182. https://doi.org/10.1097/MRM.0000000000000216

Mirzaei, R., Dehkhodaie, E., Bouzari, B., Rahimi, M., Gholestani, A., Hosseini-Fard, S. R., Keyvani, H., Teimoori, A., & Karampoor, S. (2022a). Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed Pharmacother, 145, 112352. https://doi.org/10.1016/j.biopha.2021.112352

Mirzaei, R., Mohammadzadeh, R., Sholeh, M., Karampoor, S., Abdi, M., Dogan, E., Moghadam, M. S., Kazemi, S., Jalalifar, S., Dalir, A., Yousefimashouf, R., Mirzaei, E., Khodavirdipour, A., & Alikhani, M. Y. (2020b). The importance of intracellular bacterial biofilm in infectious diseases. Microb Pathog, 147, 104393. https://doi.org/10.1016/j.micpath.2020.104393

Mirzaei, R., Sabokroo, N., Ahmadyousefi, Y., Motamedi, H., & Karampoor, S. (2022b). Immunometabolism in biofilm infection: lessons from cancer. Molecular Medicine, 28, 10. https://doi.org/10.1186/s10020-022-00435-2

Mohseni, S., Bayani, M., Bahmani, F., Tajabadi-Ebrahimi, M., Bayani, M. A., Jafari, P., & Asemi, Z. (2018). The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Diabetes Metabolism Research and Reviews, 34(3), e2970. https://doi.org/10.1002/dmrr.2970

Onbas, T., Osmanagaoglu, O., & Kiran, F. (2019). Potential properties of Lactobacillus plantarum F-10 as a biocontrol strategy for wound infections. Probiotics and Antimicrobial Proteins, 11(4), 1110-1123. https://doi.org/10.1007/s12602-018-9486-8

Ong, J., Taylor, T., Yong, C., Khoo, B., Sasidharan, S., Choi, S., Ohno, H., & Liong, M. (2019). Lactobacillus plantarum USM8613 aids in wound healing and suppresses Staphylococcus aureus infection at wound sites. Probiotics Antimicrob Proteins, 12, 125-137. https://doi.org/10.1007/s12602-018-9505-9

Owen, L., Reinders, M., Narramore, R., Marsh, A. M. R., Gar Lui, F., Baron, R., Plummer, S., & Corte, B. M. (2014). A double blind, placebo controlled, randomized pilot trial examining the effects of probiotic administration on mood and cognitive function. Proceed Nutr Soc, 73(1), 29. https://doi.org/10.1017/S0029665114000433

Patel, B., Patel, K., Huang, R., Lee, C., & Moochhala, S. (2022).The gut-skin microbiota axis and its role in diabetic wound healing - are view based on current literature. Int J Mol Sci, 23(4), 2375. https://doi.org/10.3390/ijms23042375

Peng, M., Liu, J., & Liang, Z. (2019). Probiotic Bacillus subtilis CW14 reduces disruption of the epithelial barrier and toxicity of ochratoxin A to Caco-2 cells. Food Chem Toxicol, 126, 25-33. https://doi.org/10.1016/j.fct.2019.02.009

Peri, A. M., Doi, Y., Potoski, B. A., Harris, P. N., Paterson, D. L., & Righi, E. (2019). Antimicrobial treatment challenges in the era of carbapenem resistance. Diagn Microbiol Infect Dis, 94(4), 413-425. https://doi.org/10.1016/j.diagmicrobio.2019.01.020

Piewngam, P., Zheng, Y., Nguyen, T. H., Dickey, S. W., Joo, H.-S., Villaruz, A. E., Glose, K. A., Fisher, E. L., Hunt, R. L., Li, B., Chiou, J., Pharkjaksu, S., Khongthong, S., Cheung, G. Y. C., Kiratisin, P., & Otto, M. (2018). Pathogen elimination by probiotic Bacillus via signalling interference. Nature, 562(7728), 532-537. https://doi.org/10.1038/s41586-018-0616-y

Pinchuk, I., Bressollier, P., & Sorokulova, І. (2001). In vitro anti- Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial agents and chemotherapy, 45(11), 3156-61. https://doi.org/10.1128/AAC.45.11.3156-3161.2001

Prakash, S., Rodes, L., Coussa-Charley, M., & Tomaro-Duchesneau, C. (2011). Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics, 5, 71-86. https://doi.org/10.2147/BTT.S19099

Rajasekharan, S. K., Paz-Aviram, T., Galili, S., Berkovich, Z., Reifen, R., & Shemesh, M. (2021). Biofilm formation onto starch fibres by Bacillus subtilis governs its successful adaptation to chickpea milk. Microbial Biotechnology, 14(4), 1839-1846. https://doi.org/10.1111/1751-7915.13665

Ratna Sudha, M., Yelikar, K. A., & Deshpande, S. (2012). Clinical study of Bacillus coagulans Unique IS-2 (ATCC PTA-11748) in the treatment of patients with bacterial vaginosis. Indian J Microbiol, 52(3), 396-99. https://doi.org/10.1007/s12088-011-0233-z

Reid, G. (2006). Probiotics to prevent the need for, and augment the use of, antibiotics. Canadian Journal of Infectious Diseases and Medical Microbiology, 17(5), 295. https://doi.org/10.1155/2006/934626

Reid, G., Beuerman, D., Heinemann, C., & Bruce, A. W. (2001). Probiotic Lactobacillus dose required to restore and maintain a normal vaginal flora. FEMS Immunol Med Microbiol, 32(1), 37-41. https://doi.org/10.1111/j.1574-695X.2001.tb00531.x

Reid, G., Charbonneau, D., Erb, J., Kochanowski, B., Beuerman, D., Poehner, R., & Bruce, A. (2003). Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol Med Microbiol, 35(2), 131-134. https://doi.org/10.1016/S0928-8244(02)00465-0

Reid, G., Dols, J., & Miller, W. (2009). Targeting the vaginal microbiota with probiotics as a means to counteract infections. Curr Opin Clin Nutr Metab Care, 12(6), 583-587. https://doi.org/10.1097/MCO.0b013e328331b611

Reid, G., Younes, J. A., van der Mei, H. C., Gloor, G. B., Knight, R., & Busscher, H. J. (2011). Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol, 9(1), 27-38. https://doi.org/10.1038/nrmicro2473

Ross K., (2023). Psychobiotics: Are they the future intervention for managing depression and anxiety? A literature review. Explore (NY), 19(5), 669-680. https://doi.org/10.1016/j.explore.2023.02.007

Ruiz, F., Gerbaldo, G., Asurmendi, P., Pascual, L., Giordano, W., & Barberis, I. (2009). Antimicrobial activity, inhibition of urogenital pathogens, and synergistic interactions between Lactobacillus strains. Curr Microbiol, 59, 497-501. https://doi.org/10.1007/s00284-009-9465-0

Santacroce, L., Charitos, I. A., & Bottalico, L. (2019). A successful history: probiotics and their potential as antimicrobials. Expert Rev Anti Infect Ther, 17(8), 635-45. https://doi.org/10.1080/14787210.2019.1645597

Satish, L., Gallo, P., Johnson, S., Yates, C., & Kathju, S. (2017). Local probiotic therapy with Lactobacillus plantarum mitigates scar formation in rabbits after burn injury and infection. Surg Infect (Larchmt), 18(2), 119-127. https://doi.org/10.1089/sur.2016.090

Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian journal of microbiology, 50(1), 1-17. https://doi.org/10.1139/w03-076

Sepp, E., Kolk, H., Lõivukene, K., & Mikelsaar, M. (2014). Higher blood glucose level associated with body mass index and gut microbiota in elderly people. Microb Ecol Health Dis, 25, 228-257. https://doi.org/10.3402/mehd.v25.22857

Shanehbandi, D., Baradaran, B., Sadigh-Eteghad, S., & Zarredar, H. (2014). Occurrence of methicillin resistant and enterotoxigenic Staphylococcus aureus in traditional cheeses in thenorth west of Iran. ISRN Microbiol, 129580. https://doi.org/10.1155/2014/129580

Shin, J., Gwak, J., Kamarajan, P., Fenno, J., Rickard, A., & Kapila, Y. (2016). Biomedical applications of nisin. Journal of Applied Microbiology, 120(6), 1449-1465. https://doi.org/10.1111/jam.13033

Skerk, V., & Markotić, A. (2010). [Urogenital infections - antimicrobial treatment]. Med Glas (Zenica), 7(1), 1-11.Croatian. PMID: 20387718.

Skoufou, M., Tsigalou, C., Vradelis, S., & Bezirtzoglou, E. (2024). The networked interaction between probiotics and intestine in health and disease: apromising success story. Microorganisms, 12(1), 194. https://doi.org/10.3390/microorganisms12010194

Sorokulova, I. (2013). Modern status and perspectives of Bacillus bacteria as probiotics. J Prob Health, 1, e106. https://doi.org/10.4172/2329-8901.1000e106

Srivastava, A., Gupta, J., Kumar, S., & Kumar, A. (2017). Gut biofilm forming bacteria in inflammatory bowel disease. Microbial Pathogenesis, 112, 5-14. https://doi.org/10.1016/j.micpath.2017.09.041

Starosila, D., Rybalko, S., Varbanetz, L., Ivanskaya, N., & Sorokulova, I. (2017). Anti-influenza activity of a Bacillus subtilis probiotic strain. Antimicrob Agents Chemother, 61, e00539-17. https://doi.org/10.1128/AAC.00539-17

Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol, 56(4), 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

Sumi, C., Yang, B., Yeo, I., & Hahm, Y. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol, 61(2), 93-103. https://doi.org/10.1139/cjm-2014-0613

Tatullo, M., Marrelli, M., Scacco, S., Lorusso, M., Doria, S., Sabatini, R., Auteri, P., Cagiano, R., & Inchingolo, F. (2012). Relationship between oxidative stress and "burning mouth syndrome" in female patients: a scientific hypothesis. Eur Rev Med Pharmacol Sci, 16(9), 1218-1221.

Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., Gao, C., Olsen, R. E., Ran, C., & Zhou, Z. (2020). Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: are view. Front Nutr, 22, 7, 570344. https://doi.org/10.3389/fnut.2020.570344

Toh, S., Boswell-Ruys, C., Lee, B., Simpson, J., & Clezy, K. (2017). Probiotics for preventing urinary tract infection in people with neuropathic bladder. Cochrane Database Syst Rev, 9, CD010723. https://doi.org/10.1002/14651858.CD010723.pub2

Toh, S., Lee, B., Simpson, J., Rice, S., Kotsiou, G., Marial, O., & Ryan, S. (2020). Effect of probiotics on multi-resistant organism colonisation in persons with spinal cord injury: secondary outcome of Pro SCIUTTU, a randomised placebo-controlled trial. Spinal Cord, 58(7), 755-767. https://doi.org/10.1038/s41393-020-0420-z

Tolker-Nielsen, T. (2015). Biofilm development. Microbiol Spectr, 3(2), MB-0001-2014. https://doi.org/10.1128/9781555817466.ch3

Turner, N., Sharma-Kuinkel, B., Maskarinec, S., Eichenberger, E., Shah, P., Carugati, M., Holland, T., & Fowler, Jr. V. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203-218. https://doi.org/10.1038/s41579-018-0147-4

Venosi, S., Ceccarelli, G., de Angelis, M., Laghi, L., Bianchi, L., Martinelli, O., Maruca, D., Cavallari, E. N., Toscanella, F., Vassalini, P., Trinchieri, V., Oliva, A., & d'Ettorre, G. (2019). Infected chronic ischemic wound topically treated with a multi-strain probiotic formulation: a novel tailored treatment strategy. J Transl Med, 17(1), 364. https://doi.org/10.1186/s12967-019-2111-0

Vestby, L., Grønseth, T., Simm, R., & Nesse, L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel), 9(2), 59. https://doi.org/10.3390/antibiotics9020059

Wang, Y., Tan, X., Xi, C., & Phillips, K. (2018). Removal of Staphylococcus aureus from skin using a combination antibiofilm approach. NPJ Biofilms and Microbiomes, 4(1), 16-19. https://doi.org/10.1038/s41522-018-0060-7

Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1694(1-3), 299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011

Wiegers, C., van de Burgwal, L. H. M., & Larsen, O. F. A. (2022). Probiotics for the management of infectious diseases: reviewing the state of the art. Front Microbiol, 13, 877142. https://doi.org/10.3389/fmicb.2022.877142

Wu, T., Xiao, F. & Li, W. (2021). Macrolactins: biological activity and biosynthesis. Mar Life Sci Technol, 3, 62-68. https://doi.org/10.1007/s42995-020-00068-6

Yang, X., Chen, H., Zheng, Y., Qu, S., & Wang, H., Yi, F. (2022). Disease burden and long-term trends of urinary tract infections: a worldwide report. Front Public Health, 10, 888205. https://doi.org/10.3389/fpubh.2022.888205

Wang, X., Zhang, P., & Zhang, X. (2021). Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules, 6(19), 6076. https://doi.org/10.3390/molecules26196076

Zhu, J., Chen, Y., Imre, K., Arslan-Acaroz, D., Istanbullugil, F. R., Fang, Y., Ros, G., & Acaroz, K. Z. U. (2023). Mechanisms of probiotic Bacillus against entire bacterial infections. One Health Advances, 1, 21. https://doi.org/10.1186/s44280-023-00020-0

Downloads

Published

2024-12-23

How to Cite

Safronova, L., Pylypiuk, Y., Skorochod, I., & Polova, Z. (2024). Probiotics and Their Potential for the Prevention and Treatment of Infections. Mikrobiolohichnyi Zhurnal, 86(6), 74-91. https://doi.org/10.15407/microbiolj86.06.074