Avian Pathogenic Escherichia Coli and its Antibiotic Resistance
DOI:
https://doi.org/10.15407/microbiolj86.05.061Keywords:
avian pathogenic E. coli, antibiotic resistance, lesionsAbstract
Avian pathogenic Escherichia coli (APEC) is a widely distributed pathogen and one of the main death causes in poultry farming. Also, these bacteria are harmful food-born pathogens with multiple virulence factors and pathogenicity that could be dangerous for humans. Moreover, APEC is characterized by a wide range of resistance to antimicrobials which successfully transmit to other microbes. Therefore, the aim of the work was to define the frequency of APEC isolation in dead birds during 2015–2022, as well as to investigate its resistance to antibiotics. Methods. During the investigation, the routine autopsy was made on dead birds of different ages from broiler, layer, and broiler-breeder poultry farms in Ukraine. The type and severity of lesions were evaluated as characterized by 0 to 3 points. Then bacteriological examination was provided with further biochemical identification through Api20 E and APi20 NE tests. The susceptibility to antibiotics of identified E. coli was detected by the Kirby-Bauer disk diffusion method regarding CLSI data. Results. 1427 birds from 113 poultry farms were examined, and as a result, 1806 bacterial isolates were detected, among which 1183 were referred to APEC. The frequency of detection of APEC isolates in dead birds was 82.9%. Most often APEC-induced severe lesions (3 points) such as fibrinous perihepatitis, pericarditis, and peritonitis. The most effective antibiotics were colistin, gentamicin, ceftiofur, florfenicol, and norfloxacin, to which activity 91.6, 85.6, 63.9, 61.0, and 52.1 % of isolated APEC strains, respectively, were susceptible, However, more than 50 % of detected APEC were resistant to amoxicillin, amoxiclav, doxycycline, oxytetracycline, flumequine, and enrofloxacin. Moreover, 59.4 % of isolated bacteria were multi-resistant and avoided negative impact of more than 6 antibiotics. Conclusions. Avian pathogenic E. coli was considered one of the leading bacteria agents in the poultry industry of Ukraine, because 82.9 % of birds were infected with the systemic form of colibacillosis. The largest number of resistant isolates during 2015–2022 was detected to flumequine (78.5 %), amoxicillin (78.4 %), amoxiclav (69.3 %), oxytetracycline (75.5 %), and doxycycline (58.3 %). The resistance to tetracyclines and quinolones increased dramatically through the years. It is therefore necessary to implement a new strategy for controlling APEC distribution based not only on rational antibiotic treatment but also on complex diagnostic and further immunization.
Downloads
References
Afayibo, D. J., Zhu, H., Zhang, B., Yao, L., Abdelgawad, H. A., Tian M., Qi J., Liu, Y., & Wang, S. (2022). Isolation, molecular characterization, and antibiotic resistance of Avian Pathogenic Escherichia coli in Eastern China. Vet Sci, 9 (7). https://doi.org/10.3390/vetsci9070319
Alber, A., Morris, K. M., Bryson, K. J., Sutton, K. M., Monson, M. S., Chintoan-Uta, C., Borowska, D., Lamont, S. J., Schouler, C., Kaiser, P., Stevens, M. P., & Vervelde, L. (2020). Avian Pathogenic Escherichia coli (APEC) strain-dependent immunomodulation of respiratory granulocytes and mononuclear phagocytes in CSF1R-reporter transgenic chickens. Front Immunol, 10. https://doi.org/10.3389/fimmu.2019.03055
Bhattarai, R., Basnet, H. B., Dhakal, I. P., & Devkota, B. (2024). Antimicrobial resistance of avian pathogenic Escherichia coli isolated from broiler, layer, and breeder chickens. Vet World. 17(2), 480-499. https://doi.org/10.14202/vetworld.2024.480-499
Castro, J., Barros, M. M., Araújo, D., Campos, A. M., Oliveira, R., Silva, S., Almeida, C. (2022). Swine Enteric Colibacillosis: Current Treatment Avenues and Future Directions. Front Vet Sci, 9, 981207. https://doi.org/10.3389/fvets.2022.981207
Chalmers, G., Cormier, A. C., Nadeau, M., Côté, G., Reid-Smith, R. J., Boerlin, P. (2017). Determinants of virulence and of resistance to ceftiofur, gentamicin, and spectinomycin in clinical Escherichia coli from broiler chickens in Québec, Canada. Veterinary Microbiology, 203. https://doi.org/10.1016/j.vetmic.2017.02.005
Christensen, H., Bachmeier, J., & Bisgaard, M. (2020). New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathology, 50(5). https://doi.org/10.1080/03079457.2020.1845300
Conza, J. D., Badaracco, A., Ayala J., Rodríguez, C., Famiglietti, A., Gutkind, G. (2014). β-lactamases produced by amoxicillin-clavulanate-resistant enterobacteria isolated in Buenos Aires, Argentina: a new blaTEM gene. Rev Argent Microbiol, 46(3), 210-217. https://doi.org/10.1016/S0325-7541(14)70075-6
Cordoni, G., Woodward, M. J., Wu H., Alanazi, M., Wallis T., & Ragione R. (2016). Comparative genomics of European avian pathogenic E. coli (APEC). BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-3289-7
Dozois, C. M., Daigle, F., Curtiss, R. (2003). Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci USA, 100, 247-252. https://doi.org/10.1073/pnas.232686799
Fancher, C. A., Thames, H. T., Colvin, M. G., Smith, M., Easterling, A., Nuthalapati, N., Zhang, L., Kiess, A., Dinh, T., Sukumaran A. T. (2021). Prevalence and Molecular Characteristics of Avian Pathogenic Escherichia coli in "No Antibiotics Ever" Broiler Farms. Microbiol Spectr, 9(3), e00834-21. https://doi.org/10.1128/Spectrum.00834-21
Fritsche, T. R., McDermott, P. F., Shryock, T. R., Walker, R. D., Morishita, T. Y. (2007). Agar dilution and disk diffusion susceptibility testing of Campylobacter spp. J Clin Microbiol, 45, 2758-2759. https://doi.org/10.1128/JCM.00569-07
Ginés, M. S., Cameron-Veas, K., Badiola I., Dolz, R., Majó, N., Dahbi, G., Viso, S., Mora, A., Blanco, J., Piedra, N., González-López, J., & Migura-Garcia, L. (2015). Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain. PLOS ONE 10(11). https://doi.org/10.1371/journal.pone.0143191
Ha, E., Hong, S., Kim, S., Ahn S., Kim, H., Choi, K., & Kwon, H. (2023). Tracing the evolutionary pathways of serogroup O78 avian pathogenic Escherichia coli. Antibiotics, 12(12), 1714. https://doi.org/10.3390/antibiotics12121714
Hornish, R.E., Kotarski, S.F. (2002). Cephalosporins in veterinary medicine - ceftiofur use in food animals. Curr Top Med Chem, 2(7), 717-31. https://doi.org/10.2174/1568026023393679
Hu, J., Afayibo, D. J., Zhang, B., Zhu, H., Yao, L., Guo, W., Wang, X., Wang, Z., Wang, D., Peng, H., Tian, M., Qi, J., & Wang, S. (2022). Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front Microbiol, 13. https://doi.org/10.3389/fmicb.2022.1049391
Hussein, E. A., Hair-Bejo, M., Adamu, L., Omar, A. R., Arshad S. S., Awad, E. A., & Aini, I. (2018). Scoring system for lesions induced by different strains of Newcastle Disease virus in chicken. Vet Med Int. https://doi.org/10.1155/2018/9296520
Johar, A., Al-Thani N., Al-Hadidi, S. H., Dlissi E., Mahmoud, M. H., & Eltai, N. O. (2021). Antibiotic Resistance and Virulence Gene Patterns Associated with Avian Pathogenic Escherichia coli (APEC) from Broiler Chickens in Qatar. Antibiotics, 10, 564. https://doi.org/10.3390/antibiotics10050564
Joseph, J., Zhang, L., Adhikari, P., Evans, J. D, & Ramachandran, R. (2023). Avian Pathogenic Escherichia coli (APEC) in Broiler Breeders: An Overview. Pathogens, 12(11), 1280. https://doi.org/10.3390/pathogens12111280
Kathayat, D., Lokesh, D., Ranjit, S., & Rajashekara, G. (2021). Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens, 10(4), 467. https://doi.org/10.3390/pathogens10040467
Kerek, Á., Török B., Laczkó, L., Kardos, G., Bányai, K., Somogyi, Z., Kaszab, E., Bali, K., & Jerzsele, Á. (2023). In Vitro Microevolution and Co-Selection Assessment of Florfenicol Impact on Escherichia coli Resistance Development. Antibiotics, 12(12), 1728. https://doi.org/10.3390/antibiotics12121728
Kohanski, M. A., Dwyer, D. J., Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews. Microbiology, 8, 423-435. https://doi.org/10.1038/nrmicro2333
Krishnegowda, D. N., Singh, B. R., Mariappan, A. K., Munuswamy, P., Singh, K. P., Sahoo, M., Saminathan M., Ramalingam R., Chellappa, M. M., Singh, V., Dhama, K., Reddy, M. (2022). Molecular epidemiological studies on avian pathogenic Escherichia coli associated with septicemia in chickens in India. Microbial Pathogenesis, 162. https://doi.org/10.1016/j.micpath.2021.105313
Li, B., Yin, F., Zhao, X., Guo, Y., Wang W., Wan P., Zhu, H., Yin Y., Wang, X. (2020). Colistin Resistance Gene mcr-1 Mediates Cell Permeability and Resistance to Hydrophobic Antibiotics. Front Microbiol, 10. https://doi.org/10.3389/fmicb.2019.03015
Maina, D., Okinda, N., Mulwa, E., & Revathi, G. (2014). A five-year review of APi 20E bacteria identification system's performance at a teaching hospital. East African Medical Journal, 91 (3), 73-76.
Miller, E. A., Cardona C. J., Smith, A. H., Johnson, T. J. (2023). Survey of clinical and commensal Escherichia coli from commercial broilers and turkeys, with emphasis on high-risk clones using APECTyper. Poultry Science, 102(7), 102712. https://doi.org/10.1016/j.psj.2023.102712
Mouiche, M. M., Wouembe F. D., Mpouam, S. E., Moffo, F., Djuntu M., Wombou, C. M., Feussom, K. J., Okah-Nnane, N. H., Ndukum, J. A. (2022). Cross-Sectional Survey of Prophylactic and Metaphylactic Antimicrobial Use in Layer Poultry Farming in Cameroon: A Quantitative Pilot Study. Frontiers in Veterinary Science 9, 646484. https://doi.org/10.3389/fvets.2022.646484
Palma, E., Tilocca, B., & Roncada, P. (2020). Antimicrobial resistance in veterinary medicine: an overview. Int J Mol Sci, 21 (6), 1914. https://doi.org/10.3390/ijms21061914
Pokharel, P., Dhakal, S., & Dozois, C. M. (2023). The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms, 11(2), 344. https://doi.org/10.3390/microorganisms11020344
Sevilla-Navarro, S., Catalá-Gregori, P., Torres-Boncompte, J.,. Orenga, M.T, Garcia-Llorens J., & Cortés, V. (2022). Antimicrobial Resistance Trends of Escherichia coli Isolates: A Three-Year Prospective Study of Poultry Production in Spain. Antibiotics, 11(8), 1064. https://doi.org/10.3390/antibiotics11081064
Somogyi, Z., Mag, P., Simon, R., Kerek, Á., Szabó, P., Albert, E., Biksi, I., & Jerzsele, Á. (2023). Pharmacokinetics and pharmacodynamics of florfenicol in plasma and synovial fluid of pigs at a dose of 30 mg/kgbw following intramuscular administration. Antibiotics (Basel), 12(4),758. https://doi.org/10.3390/antibiotics12040758
Swayne D. E., Glisson R., McDougald R., Nolan K., Suarez L., Nair, L. (Eds.). (2013). Disease of poultry 13th edition. A John Wiley & Sons.
Temmerman, R., Garmyn, A., Antonissen, G., Vanantwerpen, G., Vanrobaeys, M. Haesebrouck, F., & Devreesef, M. (2020). Evaluation of Fluoroquinolone Resistance in Clinical Avian Pathogenic Escherichia coli Isolates from Flanders (Belgium). Antibiotics (Basel). 9(11), 800. https://doi.org/10.3390/antibiotics9110800
Walker, G. K., Suyemoto, M. M., Gall, S., Chen, L., Thakur, S., & Borst, B. L. (2020). The role of Enterococcus faecalis during co-infection with avian pathogenic Escherichia coli in avian colibacillosis. Avian Pathology, 49(6), 589-599. https://doi.org/10.1080/03079457.2020.1796926
Wang, Z., Zhu D., Zhang, Y., Xia, F., Zhu, J., Dai, J., & Zhuge, X. (2023). Extracellular vesicles produced by avian pathogenic Escherichia coli (APEC) activate macrophage proinflammatory response and neutrophil extracellular trap (NET) formation through TLR4 signaling. Microbial Cell Factories, 22. https://doi.org/10.1186/s12934-023-02171-6
Wibisono, F., Sumiarto, B., Kusumastuti, T. (2018). Economic losses estimation of pathogenic Escherichia coli infection in Indonesian poultry farming. Bul Peternak, 42, 341-346. https://doi.org/10.21059/buletinpeternak.v42i4.37505
Yilmaz, N., Özogul, F., Moradi, M., Fadiloglu, E.E., Šimat, V., Rocha J. M. (2022). Reduction of biogenic amines formation by foodborne pathogens using postbiotics in lysine-decarboxylase broth. J Biotechnol. 10(358),118-127. https://doi.org/10.1016/j.jbiotec.2022.09.003
Zhang, H., Chen, X., Nolan, L. K., Zhang, W., Li, G. (2019). Identification of Host Adaptation Genes in Extraintestinal Pathogenic Escherichia coli during Infection in Different Hosts. Infect Immun, 87. https://doi.org/10.1128/IAI.00666-19
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mikrobiolohichnyi Zhurnal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.