The Effect of Nanoceria on the Probiotic Properties of Bacillus amyloliquefaciens ssp. plantarum Strains

Authors

  • L.A. Safronova Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • A.O. Roy Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • I.O. Skorochod Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • Y.V. Pylypiuk Poltava State Medical University, Surgery Department №2, 23 Shevchenko Str., Poltava, 36011, Ukraine

DOI:

https://doi.org/10.15407/

Keywords:

Bacillus amyloliquefaciens ssp. plantarum, cerium dioxide nanoparticles, antimicrobial activity, antioxidant potential

Abstract

A novel approach to the therapeutic enhancement of probiotics is their integration with distinctive (having a positive effect on living organisms) nanoparticles. The aim of the study was to examine the impact of nanoceria (nano-CeO2) on the growth of probiotic bacilli, as well as on their antimicrobial activity and antioxidant potential, with the intention of developing a biocomposite preparation for the prevention and treatment of infections. Methods. The number of viable bacterial cells was determined by the tenfold dilution method. The antimicrobial activity of probiotics was evaluated by disk diffusion, well diffusion tests, and measurement of growth inhibition zones of test cultures (Proteus vulgaris, Escherichia coli, Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa). The antioxidant potential of cell-free supernatants of probiotic bacteria was studied using spectrophotometric methods. Results. The growth activity of probiotic strains Bacillus amyloliquefaciens ssp. plantarum IMV B-7142 and Bacillus amyloliquefaciens ssp. plantarum IMV B-7143 reached its maximum when grown with 0.01 mM nano-CeO2. This concentration was determined to be optimal. When testing the antimicrobial activity of probiotic bacilli under the influence of nano-CeO2, its stimulating effect was revealed, but to a different degree for each of the two studied strains. B. amyloliquefaciens ssp. plantarum IMV B-7142 inhibited the growth of opportunistic pathogenic test cultures more actively than strain IMV B-7143. The antioxidant potential of cell-free supernatants of the studied bacteria was enhanced by nano-CeO2, although to varying degrees. In particular, the activity of hydroxyl radical scavenging  markedly increased compared to the control. Conclusions. Consequently, nano-CeO2, due to its stimulatory effect on the physiological and biochemical activity of B. amyloliquefaciens ssp. plantarum IMV B-7142 and IMV B-7143, may be a promising component of a biocomposite preparation.

Downloads

Download data is not yet available.

References

Alkushi, A. G., Abdelfattah-Hassan, A., Eldoumani, H., Elazab, S. T., Mohamed, S. A. M., Metwally, A. S., El-Shetry, E.S., Saleh, A. A., ElSawy, N. A., & Ibrahim, D. (2022). Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Sci Rep, 12, 5116. https://doi.org/10.1038/s41598-022-08915-5

Babenko, L.P., Zholobak, N. M., Shcherbakov, A. B., Voychuk, S. I., Lazarenko, L. M., & Spivak, M. Y. (2012). Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro. Microbiol J, 74 (3), 54-62.

Bahaddad, S. A., Almalki, M. H. K., Alghamdi, O. A., Sohrab, S. S., Yasir, M., Azhar, E. I., & Chouayekh, H. (2023). Bacillus Species as Direct-Fed Microbial Antibiotic Alternatives for Monogastric Production. Probiotics Antimicro Prot, 15, 1-16. https://doi.org/10.1007/s12602-022-09909-5

Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal, 6, 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Barde, M. P., & Barde, P. J. (2012). What to use to express the variability of data: Standard deviation or standard error of mean? Perspect Chem Res, 3 (3), 113 - 116. https://doi.org/10.4103/2229-3485.100662

Barker, E., Shepherd, J., & Asencio, I.O. (2022). The Use of Cerium Compounds as Antimicrobials for Biomedical Applications. Molecules, 27, 2678. https://doi.org/10.3390/molecules27092678

Bryan, N. S., & Grisham, M. B. (2007). Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med, 43 (5), 645-657. https://doi.org/10.1016/j.freeradbiomed.2007.04.026

Chaudhary, P., & Sharma, A. (2019). Response of nanogypsum on the performance of plant growth promotory bacteria recovered from nanocompound infested agriculture field. Environ Ecol, 37, 363-372.

Chatzimentor, I., Tsamesidis, I., Ioannou, M.-E., Pouroutzidou, G. K., Beketova, A., Giourieva, V., Papi, R., & Kontonasaki, E. (2023). Study of Biological Behavior and Antimicrobial Properties of Cerium Oxide Nanoparticles. Pharmaceutics, 15, 2509. https://doi.org/10.3390/pharmaceutics15102509

Chigurupati, S., Mughal, M. R., Okun, E., Das, S., Kumar, A., McCaffery, M., Seal, S., & Mattson, M. P. (2012). Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials, 34 (9), 2194-2201. https://doi.org/10.1016/j.biomaterials.2012.11.061

Chung, J., Eisha, S., Park, S., Morris, A.J., & Martin, I. (2023). How Three Self-Secreted Biofilm Exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int J Mol Sci, 24, 8709. https://doi.org/10.3390/ijms24108709

Corsi, F., DeiddaTarquini, G., Urbani, M., Bejarano, I., Traversa, E., & Ghibelli, L. (2023). The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? Nanomaterials, 13, 2803. https://doi.org/10.3390/nano13202803

Cutting, S. M. (2011). Bacillus probiotics. Food Microbiol, 28, 214-220. https://doi.org/10.1016/j.fm.2010.03.007

Dangi, P., Chaudhary, N., Chaudhary, V., Vird, A. S., Kajla, P., Khanna, P., Jha, S. K., Jha, N. K., Alkhanani, M. F., Singh, V., & Haque, S. (2023). Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol, 388, 110083. https://doi.org/10.1016/j.ijfoodmicro.2022.110083

Dar, M. A., Gul, R., Karuppiah, P., Al-Dhabi, N. A., & Alfadda, A. A. (2022). Antibacterial Activity of Cerium Oxide Nanoparticles against ESKAPE Pathogens. Crystals, 12, 179. https://doi.org/10.3390/cryst12020179

Deshpande, S., Patil, S., Kuchibhatla, S. V. N. T., & Seal, S. (2005). Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett, 87, 133113. https://doi.org/10.1063/1.2061873

Dhall, A., & Self, W. (2018). Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications. Antioxidants, 7, 97. https://doi.org/10.3390/antiox7080097

Didenko, G.V., Safronova, L.A., Shpak, E.G., Avdeeva, L.V., & Potebnya, G.P. (2013). Corrective action of bacillary probiotic on immune system of animals in experimental dysbacteriosis. Likarska sprava, 8, 108-116. https://doi.org/10.31640/LS-2013-8-15

Dinis, T. C. P., Madeira, V. M. C., & Almeida, M. L. M. (1994). Action of phenolic derivates (acetaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys, 315, 161 - 169. https://doi.org/10.1006/abbi.1994.1485

Dowding, J. M., Das, S., Kumar, A., Dosani, T., McCormack, R., Gupta, A., Sayle, T. X. T., Sayle, D. C., von Kalm, L., Seal, S., & Self, W. T. (2013). Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano, 7 (6), 4855-4868. https://doi.org/10.1021/nn305872d

Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol, 8, 1490. https://doi.org/10.3389/fmicb.2017.01490

Farias, I. A. P., dos Santos, C. C. L., & Sampaio, F.C. (2018). Antimicrobial Activity of Cerium Oxide Nanoparticles on Opportunistic Microorganisms: A Systematic Review. BioMed Res Int, 1923606. https://doi.org/10.1155/2018/1923606

Fogliano, V., Verde, V., Randazzo, G., & Ritieni, A. (1999). Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem, 47, 1035-1040. https://doi.org/10.1021/jf980496s

Fontana, M., Mosca, L., & Rosei, M. A. (2001). Interaction of enkephalins with oxyradicals. Biochem Pharmacol, 61, 1253-1257. https://doi.org/10.1016/S0006-2952(01)00565-2

Gomaa, E. Z. (2019). Synergistic Antibacterial Efficiency of Bacteriocin and Silver Nanoparticles Produced by Probiotic Lactobacillus paracasei Against Multidrug Resistant Bacteria. Int J Pept Res Ther, 25, 1113-1125. https://doi.org/10.1007/s10989-018-9759-9

Grant, A. Q., Gay, C. G., & Lillehoj, H. S. (2018). Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathol, 47 (4), 339-351. https://doi.org/10.1080/03079457.2018.1464117

Halliwell, B., & Gutteridge, J. M. (1981). Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxylradicals. FEBS Lett, 128, 347-352. https://doi.org/10.1016/0014-5793(81)80114-7

Imperial, I. C., & Ibana, J. A. (2016). Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front Microbiol, 7, 1983. https://doi.org/10.3389/fmicb.2016.01983

Іvanov, V. K., Polezhaeva, O. S., Shaporev, A. S., Baranchikov, A. E., Shcherbakov, A. B., & Usatenko, A.V. (2010). Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids. Russ J Inorg Chem, 55, 328-332. https://doi.org/10.1134/S0036023610030046

Jeżewska-Frąckowiak, J., Seroczyńska, K., Banaszczyk, J., Jedrzejczak, G., Żylicz-Stachula, A., & Skowron, P. M. (2018). The promises and risks of probiotic Bacillus species. Acta Biochim Pol, 65, 509-519. https://doi.org/10.18388/abp.2018_2652

Jiao, X., Song, H., Zhao, H., Bai, W., Zhang, L., & Lv, Y. (2012). Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods, 4, 3261-3267. https://doi.org/10.1039/c2ay25511a

Jomova, K., Raptova, R., Alomar, S.Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol, 97, 2499-2574. https://doi.org/10.1007/s00204-023-03562-9

Kargozar, S., Baino, F., Hoseini, S.J., Hamzehlou, S., Darroudi, M., Verdi, J., Hasanzadeh, L., Kim, H.-W., & Mozafari, M. (2018). Biomedical applications of nanoceria: New roles for an old player. Nanomedicine, 13, 3051-3069. https://doi.org/10.2217/nnm-2018-0189

Karunakaran, G., Suriyaprabha, R., Manivasakan, P., Yuvakkumar, R., & Kannan, P. N. (2013). Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol, 7 (3), 70-78. https://doi.org/10.1049/iet-nbt.2012.0048

Khan, M., Sohail, Raja, N. I., Asad, M. J., & Mashwani, Z. R. (2023). Antioxidant and hypoglycemic potential of phytogenic cerium oxide nanoparticles. Sci Rep, 13, 4514. https://doi.org/10.1038/s41598-023-31498-8

Kiepś, J., Dembczyński, R. (2022). Current Trends in the Production of Probiotic Formulations. Foods, 11, 2330. https://doi.org/10.3390/foods11152330

Korsvik, C., Patil, S., Seal, S., & Self, W.T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun, 10, 1056-1058. https://doi.org/10.1039/b615134e

Lipinski, B. (2011). Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev, 809696. https://doi.org/10.1155/2011/809696

Łubkowska, B., Jeżewska-Frąckowiak, J., Sroczyński, M., Dzitkowska-Zabielska, M., Bojarczuk, A., Skowron, P.M., & Cięszczyk, P. (2023). Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms, 11, 488. https://doi.org/10.3390/microorganisms11020488

Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P., & D'Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2, 48-78. https://doi.org/10.3390/oxygen2020006

Маtseliukh, E. V., Safronova, L. A., & Varbanets, L. D. (2015). Bacillus amyloliquefaciens subsp. plantarum probiotic strains as protease producers. Biotechnol Acta, 8 (2), 84-90. https://doi.org/10.15407/biotech8.02.084

Meli, K., Kamika, I., Keshri, J., & Momba, M. N. B. (2016). The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems. Sci Rep, 6, 39176. https://doi.org/10.1038/srep39176

Naganuma, T., & Traversa, E. (2014). The effect of cerium valence states at cerium oxide nanoparticle surface on cell proliferation. Biomaterials, 35, 4441-4453. Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5, 15. https://doi.org/10.1016/j.biomaterials.2014.01.074

Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucoseamine. Jpn J Nutr, 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307

Palmqvist, N. G. M., Bejai, S., Meijer, J., Seisenbaeva, G. A., & Kessler, V. G. (2015). Nanotitania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep, 5, 10146. https://doi.org/10.1038/srep10146

Pandey, R. P., Himanshu, G., Mukherjee, R., Chang, C.-M. (2024). Nanocarrier-mediated probiotic delivery: a systematic meta-analysis assessing the biological effects. Sci Rep 14, 631. https://doi.org/10.1038/s41598-023-50972-x

Pop, O. L., Mesaros, A., Vodnar, D. C., Suharoschi, R., Tăbăran, F., Magerușan, L., Tódor, I. S., Diaconeasa, Z., Balint, A., Ciontea, L., Sacaciu, C. (2020). Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials, 10, 1614. https://doi.org/10.3390/nano10081614

Putri, G. E., Rilda, Y., Syukri, S., Labanni, A., Arief, S. (2021). Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringaolifera leaf extract by a rapid green precipitation method. JMR&T, 15, 2355-2364. https://doi.org/10.1016/j.jmrt.2021.09.075

Reed, K., Cormack, A., Kulkarni, A., Mayton, M., Sayle, D., Klaessig, F., Stadler, B. (2014). Exploring the properties and applications of nanoceria: Is there still plenty of room at the bottom? Environ Sci Nano, 1, 390-405. https://doi.org/10.1039/C4EN00079J

Reshma, P., & Ashwini, K. (2017). Cerium Oxide Nanoparticles: Synthesis, Characterization and Study of Antimicrobial Activity. J Nanomater Mol Nanotechnol, 6, 3. https://doi.org/10.4172/2324-8777.1000219

Reva, O. N., Safronova, L. A., Mwakilili, A. D., Tibuhwa, D., Lyantagaye, S., Chan, W. Y., Lutz, S., Ahrens, C. H., Vater, J., Borriss, R. (2020). Complete genome sequence and epigenetic profile of Bacillus velezensis UCMB5140 used for plant and crop protection in comparison with other plant-associated Bacillus strains. Appl Microbiol Biotechnol, 104 (17), 7643-7656. https://doi.org/10.1007/s00253-020-10767-w

Rzigalinski, B.A., Meehan, K., Davis, R. M., Xu, Y., Miles, W. C., Cohen, C. A. (2006). Radical nanomedicine. Nanomedicine, 1, 399-412. https://doi.org/10.2217/17435889.1.4.399

Sadeghi, A., Ebrahimi, M., Kharazmi, M. S., Jafari, S. M. (2023). Role of nanomaterials in improving the functionality of probiotics; integration of nanotechnology onto micro-structured platforms. Food Biosci. 53, 102843. https://doi.org/10.1016/j.fbio.2023.102843

Sadidi, H., Hooshmand, S., Ahmadabadi, A., JavadHoseini, S., Baino, F., Vatanpour, M., Kargozar, S. (2020). Cerium oxide nanoparticles (Nanoceria): Hopes in soft tissue engineering. Molecules, 25, 4559. https://doi.org/10.3390/molecules25194559

Safronova, L. A. (2015). Biological activity of the Bacillus probiotic strains - base of the preparation Endosporyn. Reports of the National Academy of Sciences of Ukraine, 6, 138-146. https://doi.org/10.15407/dopovidi2015.06.138

Safronova, L. A., & Osadchaya, A. I. (2009). Effective preparation in treatment and prophylaxis of postpartum diseases in farming animals. Sci Innov, 5 (1), 85-88. https://doi.org/10.15407/scin5.01.085

Safronova, L. A., Osadcha, А. I., & Kudryavtsev, V.O. (2006). Biological preparation for the treatment and prevention of intestinal and purulent infections in animals. UA Patent № 76669, August 1, 2006.

Safronova, L. A., Skorochod, I. A., & Ilyash, V. M. (2021). Antioxidant and Antiradical Properties of Probiotic Strains Bacillus amyloliquefaciens ssp. plantarum. Probiotics Antimicro Prot, 13, 1585-1597. https://doi.org/10.1007/s12602-021-09827-y

Safronova, L. A., Zelena, L. B., Klochko, V. V., & Reva, O. N. (2012). Does the applicability of Bacillus strains in probiotics rely upon their taxonomy? Can J Microbiol, 58 (10), 212-219. https://doi.org/10.1139/w11-113

Sahli, C., Moya, S. E., Lomas, J. S., Gravier-Pelletier, C., Briandet, R., & Hemadi, M. (2022). Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics, 12 (5), 2383-2405. https://doi.org/10.7150/thno.67296

Sharpe, E., Andreescu, D., & Andreescu, S. (2011). Artificial nanoparticle antioxidants. Oxidative Stress: Diagnostics, Prevention, and Therapy, 1083, 8, 235-253. https://doi.org/10.1021/bk-2011-1083.ch008

Shcherbakov A. B. (2024). CeO2 nanoparticles and cerium species as antiviral agents: Critical review. Eur J Med Chem, 10, 100141. https://doi.org/10.1016/j.ejmcr.2024.100141

Shcherbakov, A. B., Ivanov, V. K., Zholobak, N. M., Ivanova, O. S., Krisanov, E. U., Baranchikov, A. B., Spivak, N. Ja., & Tretiakov, U. D. (2011). Nanocrystal line ceria-based materials - perspectives for biomedical application. Biophysics, 56 (6), 995-1015. https://doi.org/10.1134/S0006350911060170

Shcherbakov, A. B., Zholobak, N. M., & Ivanov, V. K. (2020). Biological, biomedical and pharmaceutical applications of cerium oxide. Metal Oxides Series: Cerium Oxide (CeO2): Synthesis, Properties and Applications, 279-358. https://doi.org/10.1016/B978-0-12-815661-2.00008-6

Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Anti-oxidative properties of xanthin on autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem, 40, 945-948. https://doi.org/10.1021/jf00018a005

Silva, D. R., Sardi, J., Pitangui, N., Roque, S. M., Silva, A. C. B., & Rosalen, P. L. (2020). Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J Funct Foods, 73, 104080. https://doi.org/10.1016/j.jff.2020.104080

Sumi, C., Yang, B., Yeo, I., & Hahm, Y. (2015). Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol, 61 (2), 93-103. https://doi.org/10.1139/cjm-2014-0613

Tran, C., Cock, I. E., Chen, X., & Feng, Y. (2022). Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics, 11, 88. https://doi.org/10.3390/antibiotics11010088

Williams, N., & Weir, T. L. (2024). Spore-Based Probiotic Bacillus subtilis: Current Applications in Humans and Future Perspectives. Fermentation, 10, 78. https://doi.org/10.3390/fermentation10020078

Xue, Y., Zhai, Y., Zhou, K., Wang, L., Tan, H., Luan, Q., & Yao, X. (2012). The vital role of buffer anions in the antioxidant activity of CeO2 nanoparticles. Chemistry, 18, 11115-11122. https://doi.org/10.1002/chem.201200983

Zhang, M., Zhang, C., Zhai, X., Luo F., Du Y., & Yan C. (2019). Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater, 62, 1727-1739. https://doi.org/10.1007/s40843-019-9471-7

Zhang, Y., Zhou, K. B., Zhai, Y. W., Qin, F., Pan, L. L., & Yao, X. (2014). Crystal plane effects of nano-CeO2 on its antioxidant activity. RSC Adv, 4, 50325-50330. https://doi.org/10.1039/C4RA06214K

Zheng, M., Liu, Y., Zhang, G., Yang, Z., Xu, W., & Chen, Q. (2023). The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants, 12, 1675. https://doi.org/10.3390/antiox12091675

Zholobak, N. M., Ivanov, V. K., & Shcherbakov, A. B. (2016). Interaction of nanoceria with microorganisms. Nanobiomaterials in Antimicrobial Therapy: Applications of Nanobiomaterials, 6, 419-450. https://doi.org/10.1016/B978-0-323-42864-4.00012-9

Zholobak, N. M., Shcherbakov, A. B., Babenko, L. P., Bogorad-Kobelska, O. S., Bubnov, R. V., Spivak, M. Ya., & Ivanov, V. K. (2014). The perspectives of biomedical application of the nanoceria. EPMA J, 5 (1), A136-2. https://doi.org/10.1186/1878-5085-5-S1-A136

Zholobak, N. M., Shcherbakov, A. B., Ivanov, V. K., Olevinskaya, Z. M., & Spivak, N. Y. (2011). Antiviral effectivity of ceria colloid solution. In Proceedings of the Twenty Fourth International Conference on Antiviral Research, Sofia, Bulgaria, 8-11 May 2011. https://doi.org/10.1016/j.antiviral.2011.03.137

Zhuo, M., Ma, J., & Quan, X. (2021). Cytotoxicity of functionalized CeO2 nanoparticles towards Escherichia coli and adaptive response of membrane properties. Chemosphere, 281, 130865. https://doi.org/10.1016/j.chemosphere.2021.130865

Published

2024-10-22

How to Cite

Safronova, L., Roy, A., Skorochod, I., & Pylypiuk, Y. (2024). The Effect of Nanoceria on the Probiotic Properties of Bacillus amyloliquefaciens ssp. plantarum Strains. Mikrobiolohichnyi Zhurnal, 86(5), 3-19. https://doi.org/10.15407/