Small Animal Models of Cardiovascular Disease for Evaluating the Cholesterol-Lowering Activity of Probiotic Strains
DOI:
https://doi.org/10.15407/microbiolj87.01.054Keywords:
cardiovascular diseases, probiotics, animal models, atherosclerosis, cholesterol metabolism, therapeutic efficacyAbstract
Cardiovascular diseases (CVDs) are major contributors to global morbidity and mortality, causing approximately 17 million deaths annually worldwide. The incidence of CVDs is rising among economically productive age groups, exacerbated by increasing rates of diabetes, obesity, and smoking-related conditions. Despite significant advances in managing low-density lipoprotein (LDL) cholesterol, the residual risk of atherosclerotic cardiovascular disease (ASCVD) persists, partly attributed to remnant cholesterol in triglyceride-rich lipoproteins. This review aims to evaluate suitable animal models of CVD for demonstrating the therapeutic efficacy of probiotic strains with cholesterol-lowering activity. Animal models that closely mimic human CVD conditions are essential for elucidating underlying disease mechanisms. Probiotics have shown promising preventive effects on CVD through the restoration of gut microbiota dysbiosis and anti-inflammatory responses. Mechanisms include reduction of oxidative stress, lowering of hypercholesterolemia, and modulation of bile acid metabolism. The advantages and limitations of animal models in CVD research are discussed, highlighting the strength of rodent models such as mice, which are cost-effective, genetically manipulable, and replicate key aspects of human CVD pathophysiology. Various contemporary mouse models are reviewed for their suitability in studying atherosclerosis, myocardial infarction, and other CVDs. Each model offers unique insights into disease mechanisms and responses to therapeutic interventions. Thus, selecting appropriate animal models is crucial for advancing our understanding of probiotic-mediated therapies in CVD. By leveraging these models, researchers can explore novel strategies to mitigate CVD risk factors and enhance therapeutic outcomes.
Downloads
References
Aghajanian, H., Kimura, T., Rurik, J. G., Hancock, A. S., Leibowitz, M. S., Li, L., et al. (2019). Targeting cardiac fibrosis with engineered T cells. Nature, 573, 430-433. https://doi.org/10.1038/s41586-019-1546-z
Alaqil, A. A., Abbas, A. O., El-Beltagi, H. S., El-Atty, H. K .A., Mehaisen, G. M., & Moustafa, E. S. (2020). Dietary supplementation of probiotic Lactobacillus acidophilus modulates cholesterol levels, immune response, and productive performance of laying hens. Animals, 10(9), 1588. https://doi.org/10.3390/ani10091588
Althof, N., Goetzke, C. C., Kespohl, M., Voss, K., Heuser, A., Pinkert, S., et al. (2018). The immunoproteasome-specific inhibitor ONX 0914 reverses susceptibility to acute viral myocarditis. EMBO Mol Med, 10, 200-18. https://doi.org/10.15252/emmm.201708089
Amini, M., Zayeri, F., & Salehi, M. (2021). Trend Analysis of Cardiovascular Disease Mortality, Incidence, and Mortality-to-Incidence Ratio: Results from Global Burden of Disease Study 2017. BMC Public Health, 21, 401. https://doi.org/10.1186/s12889-021-10429-0
Andreadou, I., Schulz R., Badimon, L., Adameova, A., Kleinbongard, P., Lecour, S., Nikolaou, P. E., Falcao-Pires, I., Vilahur, G., Woudberg, N., Heusch, G., & Ferdinandy, P. (2020). Hyperlipidaemia and cardioprotection: animal models for translational studies. Br J Pharmacol, 177, 5287-5311. https://doi.org/10.1111/bph.14931
Aparicio, H. J., Benjamin, E. J., Callaway, C. W., Carson, A. P., Cheng, S., Elkind, M. S. V., Evenson, K. R., Ferguson, J. F., Knutson, K. L., Lee, C. D., et al. (2021). Heart Disease and Stroke Statistics-2021 Update A Report from the American Heart Association. Circulation, 143(8), e254-e743. https://doi.org/10.1161/CIR.0000000000000950
Asan-Ozusaglam, M., & Gunyakti, A. (2019). Lactobacillus fermentum strains from human breast milk with probiotic properties and cholesterol-lowering effects. Food Science and Biotechnology, 28(2), 501-509. https://doi.org/10.1007/s10068-018-0494-y
Aswani, M. A., Kathade, S. A., Anand, P. K., Kunchiraman, B. N., Dhumma, P. R., & Jagtap, S.D. (2021). Probiotic Characterization of Cholesterol-Lowering Saccharomyces cerevisiae Isolated from Frass of Pyrrharctia isabella Caterpillars. Appl Food Biotechnol, 8(3), 189-199.
Bendali, F., Kerdouche, K., Hamma-Faradji, S., & Drider, D. (2017). In vitro and in vivo cholesterol lowering ability of Lactobacillus pentosus KF923750. Beneficial Microbes, 8(2), 271-280. https://doi.org/10.3920/BM2016.0121
Bhat, B., & Bajaj, B. K. (2019). Hypocholesterolemic potential of probiotics: Concept and mechanistic insights. Indian Journal of Experimental Biology, 57(2), 86-95.
Bidura, I. G. N. G., Siti, N. W., & Partama, I. B. G. (2019). Effect of probiotics, Saccharomyces spp. Kb-5 and Kb-8, in diets on growth performance and cholesterol levels in ducks. South African Journal of Animal Science, 49(2), 219-226. https://doi.org/10.4314/sajas.v49i2.2
Brandsma, E., Kloosterhuis, N. J., Koster, M., Dekker, D. C., Gijbels, M. J., et al. (2019). A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res, 124(1), 94-100. https://doi.org/10.1161/CIRCRESAHA.118.313234
Burke, A. C. & Huff, M. W. (2018). Regression of atherosclerosis: lessons learned from genetically modified mouse models. Curr Opin Lipidol, 29, 87-94. https://doi.org/10.1097/MOL.0000000000000493
Chen, J., Hu, J., Guo, X., Yang, Y., Qin, D., Tang, X., Huang, Z., Wang, F., Hu, D., Peng, D., & Yu, B. (2024). Apolipoprotein O modulates cholesterol metabolism via NRF2/CYB5R3 independent of LDL receptor. Cell Death and Disease, 15, 389. https://doi.org/10.1038/s41419-024-06778-4
Cho, J. H., Zhang, R., Kilfoil, P. J., Gallet, R., de Couto, G., Bresee, C., et al. (2017). Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction. Circulation, 136, 2037-50. https://doi.org/10.1161/CIRCULATIONAHA.117.028202
Curry, T., Barrameda, M. E., Thomas, T. C., & Esfandiarei, M. (2024). In vivo phenotypic vascular dysfunction extends beyond the aorta in a mouse model for fibrillin-1 (Fbn1) mutation. Scientific Reports, 14, 5779. https://doi.org/10.1038/s41598-024-56438-y
Daliri, E. B. M., Kim, Y., Do, Y., Chelliah, R., & Oh, D. H. (2022). In vitro and in vivo cholesterol reducing ability and safety of probiotic candidates isolated from Korean fermented soya beans. Probiotics and Antimicrobial Proteins, 14(1), 87-98. https://doi.org/10.1007/s12602-021-09798-0
Din, A. U., Hassan, A., Zhu, Y., Yin, T., Gregersen, H., & Wang, G. (2019). Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol, 103, 9217-9228. https://doi.org/10.1007/s00253-019-10142-4
Dixon, A., Robertson, K., Yung, A., Que, M., Randall, H., Wellalagodage, D., Cox, T., Robertson, D., Chi, C., & Sun, J. (2020). Efficacy of Probiotics in Patients of Cardiovascular Disease Risk: A Systematic Review and Meta-Analysis. Current Hypertension Reports, 22, 74. https://doi.org/10.1007/s11906-020-01080-y
Duan, Y., Gong, K., Xu, S., Zhang, F., Meng, X., & Han, J. (2022). Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduction and Targeted Therapy, 7, 265. https://doi.org/10.1038/s41392-022-01125-5
Fernandez-Calderon, M. C., Sanchez-Moro, M. D. H., & Rincon, E. O. (2022). In vitro Cholesterol Assimilation by Bifidobacterium animalis subsp. lactis (BPL1) Probiotic Bacteria under Intestinal Conditions. Endocr Metab Immune Disord Drug Targets, 22(4), 433-439. https://doi.org/10.2174/1871530321666210908124848
Frappier, M., Auclair, J., Bouasker, S., Gunaratnam, S., Diarra, C., & Millette, M. (2022). Screening and Characterization of Some Lactobacillaceae for Detection of Cholesterol‑Lowering Activities. Probiotics and Antimicrobial Proteins, 14, 873-883. https://doi.org/10.1007/s12602-022-09959-9
Furtado, M. B., Wilmanns, J. C., Chandran, A., Perera, J., Hon, O., Biben, C., et al. (2017). Point mutations in murine phenocopy human congenital heart disease and induce pathogenic Wnt signaling. JCI Insight, 2, e88271. https://doi.org/10.1172/jci.insight.88271
Golforoush, P., Yellon, D. M., & Davidson, S. M. (2020). Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Research in Cardiology, 115, 73. https://doi.org/10.1007/s00395-020-00829-5
Gomez, D., Baylis, R. A., Durgin, B. G., Newman, A. A. C., Alencar, G. F., Mahan, S., et al. (2018). Interleukin -1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat Med, 24, 1418-29. https://doi.org/10.1038/s41591-018-0124-5
Gonzalez, L., MacDonald, M. E., Deng, Y. D., & Trigatti, B. L. (2018). Hyperglycemia aggravates diet-induced coronary artery disease and myocardial infarction in SR-B1-Knockout/ApoE-Hypomorphic mice. Front Physiol, 9, 1398. https://doi.org/10.3389/fphys.2018.01398
Greco, C. M., Kunderfranco, P., Rubino, M., Larcher, V., Carullo, P., Anselmo, A., et al. (2016). DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun, 7, 12418. https://doi.org/10.1038/ncomms12418
Haldar, L., & Gandhi, D. N. (2019). Cholesterol-lowering effects of Bacillus coagulans B37 and Bacillus pumilus B9 strains in a rat animal model. Indian Journal of Animal Research, 53(4), 469-475. https://doi.org/10.18805/ijar.B-3549
Hansen, M. K., Mortensen, M. B., Olesen, K. K. W., Thrane, P. G., & Maenga, M. (2024). Non-HDL cholesterol and residual risk of cardiovascular events in patients with ischemic heart disease and well-controlled LDL cholesterol: a cohort study. The Lancet Regional Health - Europe, 36, 100774. https://doi.org/10.1016/j.lanepe.2023.100774
Hassan, A., Din, A. U., Zhu, Y., Zhang, K., Li, T., Wang, Y., Luo, Y., & Wang, G. (2019). Updates in understanding the hypocholesterolemia effect of probiotics on atherosclerosis. Applied microbiology and biotechnology, 103(15), 5993-6006. https://doi.org/10.1007/s00253-019-09927-4
Hassan, A., Din, A. U., Zhu, Y., Zhang, K., Li, T., Wang, Y., Xu, S., Lei, H., Yu, X., & Wang, G. (2020). Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoE-/- mice through modulation of proinflammatory cytokines and oxidative stress. Appl Microbiol Biotechnol, 104, 6337-6350. https://doi.org/10.1007/s00253-020-10693-x
Hoving, L. R., De Vries, M. R., De Jong, R. C. M., Katiraei, S., Pronk, A., Quax, P. H. A., Van Harmelen, V., &Van Dijk, K. W. (2018). The prebiotic inulin aggravates accelerated atherosclerosis in hypercholesterolemic APOE*3-leiden mice. Nutrients, 10(2), 172. https://doi.org/10.3390/nu10020172
Huang, J., Xiao, N., Sun, Y., Wu, S., Tian, W., Lai, Y., Li, P., & Du, B. (2021). Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats. Applied Microbiology and Biotechnology, 105(1), 287-299. https://doi.org/10.1007/s00253-020-10977-2
Huc, T., Drapala, A., Gawrys, M., Konop, M., Bielinska, K., Zaorska, E., et al. (2018). Chronic, low-dose TMAO treatment reduces diastolic dysfunction and heart fibrosis in hypertensive rats. Am J Physiol Circ Physiol, 315, H1805-1820. https://doi.org/10.1152/ajpheart.00536.2018
Hussein, W. N., Mohammed, Z. M., & Almnaseer, Z. A. (2023). Data analysis methods for evaluating cardiovascular disease in patients. Measurement: Sensors, 25. https://doi.org/10.1016/j.measen.2023.100674
Jia, B., Zou, Y., Han, X., Bae, J. W., & Jeon, C. O. (2023). Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trend Microbiol, 31(1), 76-91. https://doi.org/10.1016/j.tim.2022.08.003
Jiang, T., Wu, H., Yang, X., Li, Y., Zhang, Z., Chen, F., Zhao, L., & Zhang, C. (2020). Lactobacillus Mucosae strain promoted by a high-fiber diet in genetic obese child alleviates lipid metabolism and modifies gut microbiota in ApoE-/- mice on a western diet. Microorganisms, 8(8), 1225. https://doi.org/10.3390/microorganisms8081225
Jiang, T., Xing, X., Zhang, L., Liu, Z., Zhao, J., & Liu, X. (2019). Chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics. Oxidative Med Cell Longev, 1-11. https://doi.org/10.1155/2019/7658052
Khan, A., Waqar, K., Shafique, A., Irfan, R., & Gul, A. (2018). Chapter 18. In Vitro and In Vivo Animal Models: The Engineering Towards Understanding Human Diseases and Therapeutic Interventions. Omics Technologies and Bio-Engineering Towards Improving Quality of Life, 431-448. https://doi.org/10.1016/B978-0-12-804659-3.00018-X
Khan, I., Peterson, E. D., Cannon, C. P., Sedita, L. D., Edelberg, J. M., & Ray, K. K. (2020). Time-Dependent Cardiovascular Treatment Benefit Model for Lipid-Lowering Therapies. Journal of the American Heart Association, 9, e016506. https://doi.org/10.1161/JAHA.120.016506
Kondo, T., Nakano, Y., Adachi, S., & Murohara, T. (2019). Effects of Tobacco Smoking on Cardiovascular Disease. Circ J, 83(10), 1980-1985. https://doi.org/10.1253/circj.CJ-19-0323
Krishna, S. M., Morton, S. K., Li, J., & Golledge, J. (2020). Risk Factors and Mouse Models of Abdominal Aortic Aneurysm Rupture. Int J Mol Sci, 21, 7250. https://doi.org/10.3390/ijms21197250
Langsted, A., Madsen, C. M., & Nordestgaard, B. G. (2020). Contribution of remnant cholesterol to cardiovascular risk. J Intern Med, 288(1), 116-127. https://doi.org/10.1111/joim.13059
Lau, W. L., Linnes, M., Chu, E. Y., Foster, B. L., Bartley, B. A., Somerman, M. J., et al. (2013). High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease. Nephrol Dial Transplant, 28, 62-69. https://doi.org/10.1093/ndt/gfs333
Liao, F.-F., Lin, G., Chen, X., Chen, L., Zheng, W., Raghow R., et al. (2021). Endothelial Nitric Oxide Synthase-Deficient Mice A Model of Spontaneous Cerebral Small-Vessel Disease. The American Journal of Pathology, 191(11), 1932-1945. https://doi.org/10.1016/j.ajpath.2021.02.022
Liao, J., Huang, W., & Liu, G. (2017). Animal models of coronary heart disease. The Journal of Biomedical Research, 31(1), 3-10. https://doi.org/10.7555/JBR.30.20150051
Lin, M. E., Chen, T. M., Wallingford, M. C., Nguyen, N. B., Yamada, S., Sawangmake, C., et al. (2016). Runx2 deletion in smooth muscle cells inhibits vascular osteochondrogenesis and calcification but not atherosclerotic lesion formation. Cardiovasc Res, 112, 606-16. https://doi.org/10.1093/cvr/cvw205
Linders, A. N., Dias, I. B., Fernández, T. L., Tocchetti, C. G., Bomer, N., & der Meer, P. V. (2024). A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. Npj Aging, 10, 9. https://doi.org/10.1038/s41514-024-00135-7
Liu, K., Chen, B., Zeng, F., Wang, G., Wu, X., Liu, Y., Li, G., Yan, J., & Zhang, S. (2022). ApoE/NOS3 Knockout Mice as a Novel Cardiovascular Disease Model of Hypertension and Atherosclerosis. Genes, 13(11), 1998. https://doi.org/10.3390/genes13111998
Liu, J., Xiao, X., Shen, Y., Chen, L., Xu, C., Zhao, H., et al. (2017). MicroRNA-32 promotes calcification in vascular smooth muscle cells: Implications as a novel marker for coronary artery calcification. PLoS ONE, 12, e0174138. https://doi.org/10.1371/journal.pone.0174138
Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Beede, K., & Ali, F. (2019). Evaluation of the in vitro cholesterol‐lowering activity of the probiotic strain Bacillus coagulans MTCC 5856. International Journal of Food Science & Technology, 54(1), 212-220. https://doi.org/10.1111/ijfs.13926
Miyawaki, A., Obana, M., Mitsuhara, Y., Orimoto, A., Nakayasu, Y., Yamashita, T., et al. (2017). Adult murine cardiomyocytes exhibit regenerative activity with cell cycle reentry through STAT3 in the healing process of myocarditis. Sci Rep, 7, 1407. https://doi.org/10.1038/s41598-017-01426-8
Moludi, J., Khedmatgozar, H., Nachvak, S. M., Abdollahzad, H., Moradinazar, M., & Tabaei, A.S. (2021). The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: A randomized clinical trial. Nutr Neurosci, 25(5), 1-10. https://doi.org/10.1080/1028415X.2021.1889451
Morofuji, Y., Nakagawa, S., Ujifuku, K., Fujimoto, T., Otsuka, K., Niwa, M., & Tsutsumi, K. (2022). Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals, 15(2), 151. https://doi.org/10.3390/ph15020151
Neverovskyi, A., Chernyavskyi, V., Shypulin, V., Hvozdetska, L., Tishchenko, V., Nechypurenko, T., et al. (2021). Probiotic Lactobacillus plantarum may reduce cardiovascular risk: An experimental study. ARYA Atheroscler, 17, 2156.
Nicholls, S. J., Lincoff, A. M., Bash, D., et al. (2018). Assessment of omega-3 carboxylic acids in statin-treated patients with high levels of triglycerides and low levels of high-density lipoprotein cholesterol: Rationale and design of the STRENGTH trial. Clin Cardiol, 10, 1281-88. https://doi.org/10.1002/clc.23055
Nordestgaard, B. G., Nicholls, S. J., Langsted, A., et al. (2018). Advances in lipid-lowering therapy through gene-silencing technologies. Nat Rev Cardiol, 15(5), 261-272. https://doi.org/10.1038/nrcardio.2018.3
O'Morain, V. L., & Ramji, D. P. (2020). The potential of Probiotics in the prevention and treatment of Atherosclerosis. Mol Nutr Food Res, 64(4), e1900797. https://doi.org/10.1002/mnfr.201900797
Oka, T., Maillet, M., Watt, A. J., Schwartz, R. J., Aronow, B. J., Duncan, S. A., et al. (2009). Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res, 98, 837-45. https://doi.org/10.1161/01.RES.0000215985.18538.c4
O'Morain, V. L., & Ramji, D. P. (2020). The potential of probiotics in the prevention and treatment of atherosclerosis. Molecular nutrition & food research, 64(4), e1900797. https://doi.org/10.1002/mnfr.201900797
Oniszczuk, A., Oniszczuk, T., Gancarz, M., & Szymanska, J. (2021). Role of gut microbiota, Probiotics and Prebiotics in the cardiovascular diseases. Molecules, 26(4), 1172. https://doi.org/10.3390/molecules26041172
Oppi, S., Lüscher, T. F., & Stein, S. (2019). Mouse Models for Atherosclerosis Research - Which Is My Line? Front Cardiovasc Med, 6, 46. https://doi.org/10.3389/fcvm.2019.00046
Paalvast, Y., Gerding, A., Wang, Y., Bloks, V. W., van Dijk, T. H., Havinga, R., et al. (2017). Male apoE*3-Leiden.CETP mice on high-fat high-cholesterol diet exhibit a biphasic dyslipidemic response, mimicking the changes in plasma lipids observed through life in men. Physiol Rep, 5, e13376. https://doi.org/10.14814/phy2.13376
Paalvast, Y., Zhou, E., Rozendaal, Y. J. W., Wang, Y., Gerding, A., van Dijk, T. H., et al. (2022). A Systems Analysis of Phenotype Heterogeneity in APOE*3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding. Nutrients, 14(22), 4936. https://doi.org/10.3390/nu14224936
Palaniyandi, S. A., Damodharan, K., Suh, J. W., & Yang, S. H. (2020). Probiotic characterization of cholesterol-lowering Lactobacillus fermentum MJM60397. Probiotics and antimicrobial proteins, 12(3), 1161-1172. https://doi.org/10.1007/s12602-019-09585-y
Pan, S., Liu, H., Gao, F., Luom, H., Lin, H., Meng, L., et al. (2018). Folic acid delays development of atherosclerosis in low-density lipoprotein receptor-deficient mice. J Cell Mol Med, 22, 3183-91. https://doi.org/10.1111/jcmm.13599
Park, S., Kang, J., Choi, S., Park, H., Hwang, E., Kang, Y., Kim, A.R., Holzapfel, W., & Ji, Y. (2018). Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLoS One, 13(8), e0203150. https://doi.org/10.1371/journal.pone.0203150
Park, S.-J., Kim, R. Y., Park, B.-W., Lee, S., Choi, S.W., Park, J.-H., et al. (2019). Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat Commun, 10, 3123. https://doi.org/10.1038/s41467-019-11091-2
Peled, M., Nishi, H., Weinstock, A., Barrett, T. J., Zhou, F., Quezada, A., et al. (2017). A wild-type mouse-based model for the regression of inflammation in atherosclerosis. PLoS One, 12, e0173975. https://doi.org/10.1371/journal.pone.0173975
Pimenta, F. S., Luaces-Regueira, M., Ton, A., Campagnaro, B. P., Campos-Toimilb, M., Pereiraa, T. M., & Vasquez, E. C. (2018). Mechanisms of Action of Kefir in Chronic Cardiovascular and Metabolic Diseases. Cell Physiol Biochem, 48, 1901-1914. https://doi.org/10.1159/000492511
Poli, A., Catapano, A. L., Corsini, A., Manzato, E., Werba, J. P., Catena, G., et al. (2023). LDL-cholesterol control in the primary prevention of cardiovascular diseases: An expert opinion for clinicians and health professionals. Nutrition, Metabolism & Cardiovascular Diseases, 33(2), 245-257. https://doi.org/10.1016/j.numecd.2022.10.001
Pradhan, A. D., Paynter, N. P., Everett, B. M., et al. (2018). Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am Heart J, 206, 80-93. https://doi.org/10.1016/j.ahj.2018.09.011
Prete, R., Long, S. L., Gallardo, A. L., Gahan, C. G., Corsetti, A., & Joyce, S. A. (2020). Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci Rep, 10, 1-11. https://doi.org/10.1038/s41598-020-58069-5
Pushpass, R.-A. G., Alzoufairi, S., Jackson, K. G., & Lovegrove, J. A. (2022). Circulating bile acids as a link between the gut microbiota and cardiovascular health: impact of prebiotics, probiotics and polyphenol-rich foods. Nutrition Research Reviews, 35(2), 161-180. https://doi.org/10.1017/S0954422421000081
Qiu, L., Tao, X., Xiong, H., Yu, J., & Wei, H. (2018). Lactobacillus plantarumZDY04 exhibits a strain-specific property of lowering TMAOviathe modulation of gut microbiota in mice. Food Func, 9, 4299-4309. https://doi.org/10.1039/C8FO00349A
Ray, K. K., Ference, B. A., Séverin, T., Blom, D., Nicholls, S. J., Shiba, M. H., et al. (2022). World Heart Federation Cholesterol Roadmap 2022. Global heart journal, 17(1), 75. https://doi.org/10.5334/gh.1154
Redinbo, M. R. (2020). The microbiome revolution turns to cholesterol. Cell host & Microbe, 28. https://doi.org/10.1016/j.chom.2020.07.011
Remels, A. H. V., Derks, W. J. A., Cillero-Pastor, B., Verhees, K. J. P., Kelders, M. C., Heggermont, W., et al. (2018). NF-κB-mediated metabolic remodelling in the inflamed heart in acute viral myocarditis. Biochim Biophys Acta, 1864, 2579-89. https://doi.org/10.1016/j.bbadis.2018.04.022
Ren, J., Wu, L., Wu, J., Tang, X., Lv, Y., Wang, W., Li, F., Yang, D., Liu, C., & Zheng, Y. (2022). The molecular mechanism of Ang II induced-AAA models based on proteomics analysis in ApoE−/− and CD57BL/6J mice. Journal of Proteomics, 268, 104702. https://doi.org/10.1016/j.jprot.2022.104702
Romero, M., & Duarte, J. (2023). Probiotics and Prebiotics in Cardiovascular Diseases. Nutrients, 15, 3686. https://doi.org/10.3390/nu15173686
Saikia, D., Manhar, A. K., Deka, B., Roy, R., Gupta, K., Namsa, N. D., Chattopadhyay, P., Doley, R., & Mandal, M. (2018). Hypocholesterolemic activity of indigenous probiotic isolate Saccharomyces cerevisiae ARDMC1 in a rat model. Journal of food and drug analysis, 26(1), 154-162. https://doi.org/10.1016/j.jfda.2016.12.017
Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res, 61(1), 1600240. https://doi.org/10.1002/mnfr.201600240
Savojia, H., Mohammadia, M. H., Rafatianc, N., Toroghib, M. K., Wanga, E. Y., Zhaoa, Y., Korolja, A., Samad Ahadian, S., & Radisic, M. (2019). Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 198, 3-26. https://doi.org/10.1016/j.biomaterials.2018.09.036
Sawada, H., Lu, H. S., Cassis L. A., & Daugherty, A. (2022). Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arteriosclerosis, Thrombosis and Vascular Biology, 42(3). https://doi.org/10.1161/ATVBAHA.121.317058
Seijkens, T. T. P., van Tiel, C. M., Kusters, P. J. H., Atzler, D., Soehnlein, O., Zarzycka, B., et al. (2018). Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. J Am College Cardiol, 71, 527-42. https://doi.org/10.1016/j.jacc.2017.11.055
Singhal, N., Maurya, A. K., Mohanty, S., Kumar, M., & Virdi, J. S. (2019). Evaluation of bile salt hydrolases, cholesterol-lowering capabilities, and probiotic potential of Enterococcus faecium isolated from rhizosphere. Frontiers in microbiology, 10, 1567. https://doi.org/10.3389/fmicb.2019.01567
Sosnovik, D. E., & Scherrer-Crosbie, M. (2022). Biomedical Imaging in Experimental Models of Cardiovascular Disease. Circulation Research, 130, 1851-1868. https://doi.org/10.1161/CIRCRESAHA.122.320306
Spivak, M., Bubnov, R., Yemets, I., Lazarenko, L., Timoshok, N., Vorobieva, A., et al. (2013a). Doxorubicin dose for congestive heart failure modeling and the use of general ultrasound equipment for evaluation in rats. Longitudinal in vivo study. Med Ultrason, 15(1), 23-8. https://doi.org/10.11152/mu.2013.2066.151.ms1ddc2
Spivak, M. Y., Bubnov, R., Yemets, I., Lazarenko, L., Timoshok, N., & Ulberg, Z. (2013b). Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J, 4(1), 20. https://doi.org/10.1186/1878-5085-4-20
Starovoitova, S. O., Lazarenko, L. M., Babenko, L. P., Demchenko, O. M., & Kishko, K. M. (2024). Selection of probiotic microorganisms and their compositions as a basis of a line functional food products with hypocholesterinemic properties. Mikrobiol Z, 86(3), 3-17.
Starovoitova, S. О., Kishko, K. M., Bila, V. V., Demchenko, O. M. & Spivak, M. Ya. (2022). Modern aspects of probiotic microorganisms' microencapsulation. Mikrobiol Z, 84(5), 72-85. https://doi.org/10.15407/microbiolj84.05.072
Taslim, N. A., Yusuf, M., Ambari, A. M., Puling, I. M. D. R., Ibrahim, F. Z., Hardinsyah, H., et al., (2023). Anti‑Inflammatory, Antioxidant, Metabolic and Gut Microbiota Modulation Activities of Probiotic in Cardiac Remodeling Condition: Evidence from Systematic Study and Meta‑Analysis of Randomized Controlled Trials. Probiotics and Antimicrobial Proteins, 15, 1049-1061. https://doi.org/10.1007/s12602-023-10105-2
Tenopoulou, M., Doulias, P.-T., Nakamoto, K., Berrios, K., Zura, G., Li, C., et al., (2018). Oral nitrite restores age-dependent phenotypes in eNOS-null mice. JCI Insight, 3(16), e122156. https://doi.org/10.1172/jci.insight.122156
Tom, D. H., Schön, C., Wagner, T., Pankoke, H. C., Fluegel, M., & Speckmann, B. (2021). A synbiotic formulation comprising Bacillus subtilis DSM 32315 and L-alanyl-L-glutamine improves intestinal butyrate levels and lipid metabolism in healthy humans. Nutrients, 14(1), 143. https://doi.org/10.3390/nu14010143
Torikai, H., Chen, M.-H., Jin, L., He, J., Angle, J. F., & Shi, W. (2023). Atherogenesis in Apoe−/− and Ldlr−/− Mice with a Genetically Resistant Background. Cells, 12, 1255. https://doi.org/10.3390/cells12091255
Vasquez, E. C., Pereira, T. M. C., Peotta, V. A., Baldo, M. P., & Campos-Toimil, M. (2019). Probiotics as beneficial dietary supplements to prevent and treat cardiovascular diseases: Uncovering their impact on oxidative stress. Oxidative Med Cell Longev, 1-11. https://doi.org/10.1155/2019/3086270
von Scheidt, M., Zhao, Y., Kurt, Z., Pan, C., Zeng, L., Yang, X., Schunkert, H., & Lusis, A. J. (2017). Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metabolism, 25(2), 248-261. https://doi.org/10.1016/j.cmet.2016.11.001
Wang, J. J.-C., Rau, C., Avetisyan, R., Ren, S., Romay, M. C., Stolin, G., et al. (2016). Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet, 12, e1006038. https://doi.org/10.1371/journal.pgen.1006038
Wargocka-Matuszewska, W., Uhrynowski, W., Rozwadowska, N., & Rogulski, Z. (2023). Recent Advances in Cardiovascular Diseases Research Using Animal Models and PET Radioisotope Tracers. Int J Mol Sci, 24, 353. https://doi.org/10.3390/ijms24010353
Wen, H., Wang, M., Gong, S., Li, X., Meng, J., Wen J., Wang, Y., Zhang, S., & Xin, S. (2020). Human Umbilical Cord Mesenchymal Stem Cells Attenuate Abdominal Aortic Aneurysm Progression in Sprague-Dawley Rats: Implication of Vascular Smooth Muscle Cell Phenotypic Modulation. Stem Cells and Development, 29(15). https://doi.org/10.1089/scd.2020.0058
Wu, H. & Chiou, J. (2021). Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients, 13, 2878. https://doi.org/10.3390/nu13082878
Xue, C., Zhao, G., Zhao, Y., Chen, Y. E. & Zhang, J. (2022). Mouse Abdominal Aortic Aneurysm Model Induced by Perivascular Application of Elastase. J Vis Exp, 11(180), 10.3791/63608. https://doi.org/10.3791/63608
Yusuf, D., Nuraida, L., Dewanti-Hariyadi, R., & Hunaefi, D. (2019). In Vitro Characterization of Lactic Acid Bacteria from Indonesian Kefir Grains as Probiotics with Cholesterol-Lowering Effect. J Microbiol Biotechnol, 30(5), 726-732. https://doi.org/10.4014/jmb.1910.10028
Zhang, F., Qiu, L., Xu, X., Liu, Z., Zhan, H., Tao, X., Shah, N. P., & Wei, H. (2017). Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats. Journal of dairy science, 100(3), 1618-1628. https://doi.org/10.3168/jds.2016-11870
Zhou, P., Zhang, X., Guo, M., Guo, R., Wang, L., Zhang, Z., et al. (2019). Ginsenoside Rb1 ameliorates CKD-associated vascular calcification by inhibiting the Wnt/β-catenin pathway. J Cell Mol Med, 23, 7088-7098. https://doi.org/10.1111/jcmm.14611
Miyabe, C., Miyabe, Y., Bricio-Moreno, L., Lian, J., Rahimi, R. A., Miura, N. N., et al. (2019). Dectin-2-induced CCL2 production in tissue-resident macrophages ignites cardiac arteritis. J Clin Invest, 130, 3610-24. https://doi.org/10.1172/JCI123778
Zhou, R., Stouffer, G. A., & Frishman, W. H. (2022). Cholesterol Paradigm and Beyond in Atherosclerotic Cardiovascular Disease: Cholesterol, Sterol Regulatory Element-Binding Protein, Inflammation, and Vascular Cell Mobilization in Vasculopathy. Cardiol Rev, 30(5), 267-273. https://doi.org/10.1097/CRD.0000000000000406
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mikrobiolohichnyi Zhurnal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.