Effect of Different Doses of Ge Citrate and Probiotic Lactobacillus casei B-7280 on the Phospholipid Composition of Bees Tissues
DOI:
https://doi.org/10.15407/microbiolj87.01.013Keywords:
honey bees, body tissues, nanotechnological Ge citrate, probiotic, phospholipidsAbstract
Aim. To investigate changes in the phospholipid composition of bee body tissues under the influence of the lyophilized probiotic strain Lactobacillus casei IMV B-7280 in combination with nanotechnological Ge citrate in laboratory conditions. Methods. The research was conducted on honey bees of the Carpathian breed. Bees of the control group were fed with 60% sugar syrup in the amount of 1 cm3/group/day. Experimental 1 group of bees (E 1), in addition to 1 cm3 of sugar syrup, received 0.1 μg of Ge in the form of nanotechnological citrate and a solution of the probiotic L. casei B-7280 at a concentration of 106 CFU/cm3; experimental group 2 of bees (E 2), in addition to 1 cm3 of sugar syrup, received 0.2 μg of Ge in the form of citrate and L. casei B-7280 at a concentration of 106 CFU/cm3. Drinking sugar syrup, Ge citrate, and probiotics lasted 34 days. In the preparatory period and at the end of the experimental period, live bees were selected from the control and experimental groups for physiological and biochemical studies to determine the content of total phospholipids and the ratios of their classes in tissue homogenates of the entire organism. The content of total phospholipids was determined by the amount of inorganic phosphorus in the lipid extract. Thin-layer chromatography on silica gel was used to separate phospholipids. Rf values identified individual phospholipids. Quantitative analysis of phospholipid subclasses was performed using the TotalLab software, which was expressed as a percentage of total content. Results. The research results showed that in the homogenates of bee body tissues in the research groups, an increase in the content of total phospholipids was established relative to the preparatory period. In the fractional composition of phospholipids, an increase in the content of phosphatidylethanolamine and phosphatidylcholine was established in the tissues of bees of groups E 1 and E 2 concerning the preparatory period. An increase in the content of phosphatidylethanolamine and phosphatidylcholine and a decrease in phosphatidylinositol in body tissue lipids of group E 2 compared to the control group were noted. A decrease in the content of phosphatidylinositol in the tissues of group E 2 bees relative to the preparatory period was also established. The content of sphingomyelin and lysophosphatidylcholine decreased in tissue lipids of bees of groups E 1 and E 2 as compared to the preparatory period. The use of lactobacillus casei strain B-7280 and Ge citrate led to an increase in the number of lactobacilli and bifidobacteria in both parts of the intestine, as well as to a decrease in the number of staphylococci, streptococci, and microscopic fungi. Conclusions. Nanotechnological Ge citrate and probiotic L.casei in the applied doses under the conditions of their feeding with sugar syrup in a laboratory thermostat for 34 days show a dose-dependent biological effect on honey bees by increasing the content of total phospholipids and changing the ratios of individual subclasses of phospholipids. However, it also indicates a shift in the spectrum of different fractions of phospholipids to a decrease in the content of hard-to-oxidize lysophosphatidylcholine and sphingomyelin while increasing easy-to-oxidize phosphatidylcholine and phosphatidylethanolamine, which may indicate stabilization of compensatory mechanisms for supporting cell membranes. The use of Lactobacillus casei B-7280 and Ge citrate for feeding bees under the conditions of the laboratory thermostat led to quantitative changes in the composition of the intestinal microbiota of bees, in particular to an increase in the number of lactic acid bacteria and bifidobacteria, as well as a decrease in the number of some other groups of microorganisms in the intestine.
Downloads
References
Almasri, H., Tavares, D. A., Diogon, M., Pioz, M., Alamil, M., Sené, D., Tchamitchian, S., Cousin, M., Brunet, J. L., & Belzunces, L. P. (2021). Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. Ecotoxicol Environ Saf, 217, 112258. https://doi.org/10.1016/j.ecoenv.2021.112258
Blunsom, N. J., & Cockcroft, S. (2020). CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis. Front Cell Dev Biol, 8, 63. https://doi.org/10.3389/fcell.2020.00063
Braun, F., Rinschen, M. M., Bartels, V., Frommolt, P., Habermann, B., Hoeijmakers, J. H., Schumacher, B., Dollé, M. E., Müller, R. U., Benzing, T., Schermer, B., & Kurschat, C. E. (2016). Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging, 8(3), 441-457. https://doi.org/10.18632/aging.100900
Calzada, E., Avery, E., Sam, P. N., Modak, A., Wang, C., McCaffery, J. M., Han, X., Alder, N. N., & Claypool, S. M. (2019). Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nature communications, 10(1), 1432. https://doi.org/10.1038/s41467-019-09425-1
Cho, J. M., Chae, J., Jeong, S. R., Moon, M. J., Shin, D. Y., & Lee, J. H. (2020). Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects. Therapeutic opportunities from new insights. PLoS ONE, 15(10), e0240358. https://doi.org/10.1371/journal.pone.0240358
Chua, B. A., Ngo, J. A., Situ, K., & Morizono, K. (2019). Roles of phosphatidylserine exposed on the viral envelope and cell membrane in HIV-1 replication. Cell Commun Signal, 17, 132. https://doi.org/10.1186/s12964-019-0452-1
Dai, Y., Tang, H., & Pang, S. (2021). The Crucial Roles of Phospholipids in Aging and Lifespan Regulation. Front Physiol, 12, 7775648. https://doi.org/10.3389/fphys.2021.775648
Dickson, E. J., & Hille, B. (2019). Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J, 476(1), 1-23. https://doi.org/10.1042/BCJ20180022
Dvylyuk, I. I., & Kovalchuk, I. I. (2017). Reproductive ability of bee queens at the conditions of feeding citrates of Argentum and Cuprum. The Animal Biology, 19(2), 30-36. [In Ukrainian]. https://doi.org/10.15407/animbiol19.02.030
Fedoruk, R. S., Kovalchuk, I. I., Mezentseva, L. M., Tesarivska, U. I., Pylypets, A. Z., & Kaplunenko, V. H. (2022). Germanium compounds and their role in animal body. The Animal Biology, 24(1), 50-60. [In Ukrainian]. https://doi.org/10.15407/animbiol24.01.050
Fedoruk, R. S., Kovalchuk, I. I., Pylypets, A. Z., Tsap, M. M., Lesyk, Y. V., Androshulik, R. L., Demchenko, O. A., Tymoshok, N. O., & Babenko, L. P. (2023). The effect of probiotic microorganisms on catalase activity, fractional composition of soluble proteins, and intestinal microbiota of honey bees. Mikrobiol Z, 85(4), 46-57. https://doi.org/10.15407/microbiolj85.04.046
Folch, J., Lees, M., & Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226(1), 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
Gao, A. W., Chatzispyrou, I. A., Kamble, R., Liu, Y. J., Herzog, K., Smith, R. L., van Lenthe, H., Vervaart, M. A. T., van Cruchten, A., Luyf, A. C., van Kampen, A., Pras-Raves, M. L., Vaz, F. M., & Houtkooper, R. H. (2017). A sensitive mass spectrometry platform identifies metabolic changes of life history traits in C. elegans. Scientific reports, 7(1), 2408. https://doi.org/10.1038/s41598-017-02539-w
Halbleib, K., Pesek, K., Covino, R., Hofbauer, H. F., Wunnicke, D., Hänelt, I., Hummer, G., & Ernst, R. (2017). Activation of the unfolded protein response by lipid bilayer stress. Molecular Cell, 67(4), 673-684.e8. https://doi.org/10.1016/j.molcel.2017.06.012
Hansen, M., Rubinsztein, D. C., & Walker, D. W. (2018). Autophagy as a promoter of longevity: insights from model organisms. Molecular cell biology, 19(9), 579-593. https://doi.org/10.1038/s41580-018-0033-y
Harayama, T., & Riezman, H. (2018). Understanding the diversity of membrane lipid composition. Nature reviews. Molecular cell biology, 19(5), 281-296. https://doi.org/10.1038/nrm.2017.138
Ho, N., Yap, W. S., Xu, J., Wu, H., Koh, J. H., Goh, W. W. B., George, B., Chong, S. C., Taubert, S., & Thibault, G. (2020). Stress sensor Ire1 deploys a divergent transcriptional program in response to lipid bilayer stress. The Journal of cell biology, 219(7), e201909165. https://doi.org/10.1083/jcb.201909165
Hrechka, H., & Senchylo, O. (2022). Winter hardiness of Ukrainian bees of intrabreed type «Gadyatsky». Scientific and Production Journal «Beekeeping of Ukraine», 1(8), 14-18. [In Ukrainian]. https://doi.org/10.46913/beekeepingjournal.2022.8.02
Kates, M. (1986). Techniques in Lipidology: Isolation Analysis and Identification of Lipids, second ed., Elsevier Press, Amsterdam, The Netherlands.
Kiraz, Y., Adan, A., Kartal Yandim, M., & Baran, Y. (2016). Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol, 37(7), 8471-8486. https://doi.org/10.1007/s13277-016-5035-9
Koh, J. H., Wang, L., Beaudoin-Chabot, C., & Thibault, G. (2018). Lipid bilayer stress-activated IRE-1 modulates autophagy during endoplasmic reticulum stress. J Cell Sci, 131(22), jcs217992. https://doi.org/10.1242/jcs.217992
Kosinov, M. V., & Kaplunenko, V. G. (2009). Pat. 38391 UA, ICP C 07C 51/41 Method for metal carboxylates obtaining. Nanotechnology of obtaining metal carboxylates. Publ 12.01.2009; Bull № 1. [In Ukrainian].
Kovalchuk, I. I., Fedoruk, R. S., Rivis, Y. F., & Romaniv, L. I. (2014). Influence of Germanium and Selenium on lipid and fatty acid composition of body tissues melliferous bees and ambrosia for feeding nanoaquacitrates germanium and selenium. Scientific and technical bulletin of the State Research Control Institute of Veterinary Medicines and Feed Additives and the Institute of Animal Biology, 15(1, 2), 31−36. [In Ukrainian].
Kovalchuk, I. I., Kykish, I. B., & Kaplunenko, V. H. (2020). Influence of citrate microelements on the reproductive capacity of queen bees. Actual problems of natural sciences: modern scientific discussions: Collective monograph. Riga, Latvia: «Baltija Publishing», 87-110.
Kovalсhuk, I. I., Fedoruk, R. S., Spivak, M. Ya., Romanovyсh, M. M., & Iskra, R. Ya. (2021). Laсtobaсillus сasei IMV B-7280 immunobiotic strain influence on the viability of honey bees and the content of microelements in the organism. Mikrobiol Z, 83(2), 42-50. https://doi.org/10.15407/microbiolj83.02.042
Kwong, W. K., & Moran, N. A. (2016). Gut microbial communities of social bees. Nat Rev Microbiol, 14, 374-384. https://doi.org/10.1038/nrmicro.2016.43
Law, S-H., Chan, M-L., Marathe, G. K., Parveen, F., Chen, C-H., & Ke, L-Y. (2019). An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. International Journal of Molecular Sciences, 20(5), 1149. https://doi.org/10.3390/ijms20051149
Lazarenko, L. M., Babenko, L. P., Gichka, S. G., Sakhno, L. O., Demchenko, O. M., Bubnov, R. V., Sichel, L. M., & Spivak, M. Ya. (2021). Assessment of the Safety of Lactobacillus casei IMV B-7280 Probiotic Strain on a Mouse Model. Probiotics Antimicrob Proteins, 13(6), 1644-1657. https://doi.org/10.1007/s12602-021-09789-1
Li, L., Solvi, C., Zhang, F., Qi, Zh., Chittka, L., & Zhao, W. (2021). Gut microbiome drives individual memory variation in bumblebees. Nat Commun, 12, 6588. https://doi.org/10.1038/s41467-021-26833-4
Ma, X., Li, X., Wang, W., Zhang, M., Yang, B., & Miao, Z. (2022). Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci, 14, 975176. https://doi.org/10.3389/fnagi.2022.975176
Montoliu, I., Scherer, M., Beguelin, F., DaSilva, L., Mari, D., Salvioli, S., Martin, F. P., Capri, M., Bucci, L., Ostan, R., Garagnani, P., Monti, D., Biagi, E., Brigidi, P., Kussmann, M., Rezzi, S., Franceschi, C., & Collino, S. (2014). Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging, 6(1), 9-25. https://doi.org/10.18632/aging.100630
Neov, B., Georgieva, A., Shumkova, R., Radoslavov, G., & Hristov, P. (2019). Biotic and Abiotic Factors Associated with Colonies Mortalities of Managed Honey Bee (Apis mellifera). Diversity, 11(12), 237. https://doi.org/10.3390/d11120237
Park, S., Kim, B., & Park, S. (2021). Supplementation with phosphatidylethanolamine confers anti-oxidant and anti-aging effects via hormesis and reduced insulin / IGF-1-like signaling in C. elegans. Mech Ageing Dev, 197, 111498. https://doi.org/10.1016/j.mad.2021.111498
Petrovska, I. R., Salyha, Y. T., & Vudmaska, I. V. (2022). Statistical Methods in Biological Research. A monograph. Kyiv, Ahrarna Nauka, 172 p. [In Ukrainian].
Ptaszyńska, A. A., Gancarz, M., Hurd, P. J., Borsuk, G., Wiącek, D., Nawrocka, A., Strachecka, A., Załuski, D., & Paleolog, J. (2018). Changes in the bioelement content of summer and winter western honeybees (Apis mellifera) induced by Nosema ceranae infection. PLoS ONE, 13(7), e0200410. https://doi.org/10.1371/journal.pone.0200410
Ren, J., Lin, J., Yu, L., & Yan, M. (2022). Lysophosphatidylcholine: Potential Target for the Treatment of Chronic Pain. International Journal of Molecular Sciences, 23(15), 8274. https://doi.org/10.3390/ijms23158274
Rockenfeller, P., Koska, M., Pietrocola, F., Minois, N., Knittelfelder, O., Sica, V., Franz, J., Carmona-Gutierrez, D., Kroemer, G., & Madeo, F. (2015). Phosphatidylethanolamine positively regulates autophagy and longevity. Cell death and differentiation, 22(3), 499-508. https://doi.org/10.1038/cdd.2014.219
Romaniv, L. I., Kovalchuk, I. I., Pashchenko, A. G., & Fedoruk, R. S. (2018). Content of lipids in tissues of the melliferous bees additional fed with soybean meal, sugar syrup and citrates of Co and Ni. Bìol Tvarin, 20(3), 84-92. [In Ukrainian]. https://doi.org/10.15407/animbiol20.03.084
Sessa, L., Nardiello, A. M., Santoro, J., Concilio, S., & Piotto, S. (2021). Hydroxylated Fatty Acids: The Role of the Sphingomyelin Synthase and the Origin of Selectivity. Membranes, 11(10), 787. https://doi.org/10.3390/membranes11100787
Shyu, P. Jr., Ng, B. S. H., Ho, N., Chaw, R., Seah, Y. L., Marvalim, C., & Thibault, G. (2019). Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic ER-resident proteins. Scientific reports, 9(1), 8637. https://doi.org/10.1038/s41598-019-45020-6
Sunshine, H., & Iruela-Arispe, M. L. (2017). Membrane lipids and cell signaling. Current opinion in lipidology, 28(5), 408-413. https://doi.org/10.1097/MOL.0000000000000443
Tauber, J. P., Collins, W. R., Schwarz, R. S., Chen, Y., Grubbs, K., Huang, Q., Lopez, D., Peterson, R., & Evans, J. D. (2019). Natural product medicines for honey bees: Perspective and protocols. Insects, 10, 356. https://doi.org/10.3390/insects10100356
Trenti, F., Sandron, T., Guella, G., & Lencioni, V. (2022). Insect cold-tolerance and lipidome: Membrane lipid composition of two chironomid species differently adapted to cold. Cryobiology, 106, 84-90. https://doi.org/10.1016/j.cryobiol.2022.03.004
Tsadila, C., Amoroso, C., & Mossialos, D. (2023). Microbial Diversity in Bee Species and Bee Products: Pseudomonads Contribution to Bee Well-Being and the Biological Activity Exerted by Honey Bee Products: A Narrative Review. Diversity, 15(10), 1088. https://doi.org/10.3390/d15101088
Vaskovsky, V. E., Kostetsky, E. Y., & Vasenden, I. M. (1975). A universal reagent for phospholipid analysis. Journal of Chromatography A, 114(1), 129-141. https://doi.org/10.1016/S0021-9673(00)85249-8
Wan, Q. L., Yang, Z. L., Zhou, X. G., Ding, A. J., Pu, Y. Z., Luo, H. R., & Wu, G. S. (2019). The Effects of Age and Reproduction on the Lipidome of Caenorhabditis elegans. Oxidative medicine and cellular longevity, 4, 1-14. https://doi.org/10.1155/2019/5768953
Wu, W., Shi, X., & Xu, C. (2016). Regulation of T cell signalling by membrane lipids. Nature reviews. Immunology, 16(11), 690-701. https://doi.org/10.1038/nri.2016.103
Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S., & Moran, N. A. (2018). Honey bees as models for gut microbiota research. Lab Anim, 47, 317-325. https://doi.org/10.1038/s41684-018-0173-x
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mikrobiolohichnyi Zhurnal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.