Antifungal Activity of Non-Volatile Low-Molecular-Weight Exometabolites of Trichoderma spp. Strains Against Phytopathogenic Micromycetes

Authors

  • K.S. Sazonova Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • O.V. Andrienko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • K.S. Tsyhanenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • O.M. Yurieva Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • S.O. Syrchin Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • A.K. Pavlychenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • Ya.V. Maliarenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • Ya.I. Savchuk Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine

DOI:

https://doi.org/10.15407/

Keywords:

Trichoderma spp., antifungal activity, phytopathogenic micromycetes, non-volatile biologically active metabolites, exometabolites, biocontrol

Abstract

The species of the genus Trichoderma are well known as effective antagonists of a wide spectrum of micromycetes. The actual biopreparations for the control of phytopahogenic micromycetes based on separate Trichoderma strains with a high level of antagonism constantly appear on the market. The high interest of scientists in representatives of this genus is due to their wide spectrum of different mechanisms of antifungal activity that synergistically determine the high antagonistic properties of these strains. The ability to synthesize non-volatile low-molecular-weight exometabolites is rightly considered one of the main mechanisms of antifungal activity of Trichoderma spp. strains. Considering this, the evaluation of the antifungal potential of exometabolites of 48 Trichoderma spp. strains against a wide line of test cultures of phytopathogenic micromycetes (12 strains) and the selection of the most active strains among them for more in-depth studies was the main task of this work. Methods. The cultures of studied Trichoderma strains were grown on the surface of wheat grain for 21 days. For the extraction of biologically active exometabolites, chloroform was used. The antifungal activity was studied by a paper disk method. Statistical Microsoft Excel and Origin 8.0 (OriginLab) packages were used for data processing. Results. The results of the studies allowed us to divide Trichoderma spp. into five groups according to their antifungal activity. Among other studied ones are the “weakly active” Trichoderma strains that showed activity against 1–3 test cultures formed the biggest (38%) group. The second group (21%) united the “moderately active” strains with antifungal activity against 4–6 test cultures. The “highly active” strains (13%) with activity against 7–8 test cultures of phytopathogenes formed the smallest group. 15 % of studied Trichoderma strains that were active against 9 or more test cultures entered into the group of the “most active strains”. The extracts of strains 2932, 3108, and 2926, which suppressed the growth of accordingly 12, 11, and 10 studied test cultures of phytopathogenic micromycetes, were in this last group. Finally, 15% of strains formed the “non-active” group. Thus, almost half of Trichoderma strains (47%) demonstrated moderate and high levels of antifungal activity. Conclusions. The obtained results testify to a high level of antifungal activity of non-volatile low-molecular-weight exometabolites of Trichoderma spp. against phytopathogenic mictomycetes. As for the general role of non-volatile exometabolites in the manifestation of antifungal properties by Trichoderma spp strains as the trait of the whole genus, this role among other mechanisms (growth rate, synthesis of hydrolytic enzymes, mycoparasitism, etc.) is predominant according to our research. Nevertheless, some strains, as we indicated above, can be characterized by other ratios of mechanisms of antifungal activity. Hence, the representatives of the Trichoderma genus are one of the most perspective groups of micromycetes as the source of biologically active metabolites with antifungal properties.

Downloads

Download data is not yet available.

References

Arif, M., Verma, V., Priyadarshini, A., Satnami, L., Mishra, A., Ansari, M., Chattopadhyay, A., Bhutia, D. D., & Sarkar, A. (2024). Evaluation of Trichoderma spp. as a plant growth promoter and antagonist of major pulse pathogens. Journal of Food Legumes, 36(4), 278-287. https://doi.org/10.59797/jfl.v36.i4.164

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology Ecology, 92(4), fiw036. https://doi.org/10.1093/femsec/fiw036

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Vergara, A. G., & López-Bucio, J. (2015). Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. Journal of Plant Growth Regulation, 34, 425-432. https://doi.org/10.1007/s00344-014-9471-8

El-Hasan, A., Walker, F., Klaiber, I., Schöne, J., Pfannstiel, J., & Voegele, R. T. (2022). New approaches to manage Asian soybean rust (Phakopsora pachyrhizi) using Trichoderma spp. or their antifungal secondary metabolites. Metabolites, 12(6), 507. https://doi.org/10.3390/metabo12060507

Gonzalez, M. F., Galarza, L., Valdez, L. L., & Quizpe, G. M. (2023). A systematic review of antifungal activity of metabolites from Trichoderma spp., and fungicides against Fusarium oxysporum. Bionatura Journal, 8(2), 7. https://doi.org/10.21931/RB/2023.08.02.7

Inayati, A., Setyowati, L., Aini, L. Q., & Yusnawan, E. (2021). Plant growth promoter produced by Trichoderma virens and its effect on mungbean (Vigna radiata (L.) Wilczek) seedling. IOP Conference Series: Earth and Environmental Science, 803, 012013. https://doi.org/10.1088/1755-1315/803/1/012013

Martínez-Medina, A., Del Mar Alguacil, M., Pascual, J. A., & Van Wees, S. C. M. (2014). Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. Journal of Chemical Ecology, 40, 804-815. https://doi.org/10.1007/s10886-014-0478-1

Marques, E., Martins, I., & de Mello, S. C. M. (2018). Antifungal potential of crude extracts of Trichoderma spp. Biota Neotropica, 18(1), e20170418. https://doi.org/10.1590/1676-0611-bn-2017-0418

Maurya, S., Ntakirutimana, R., Denath, B., Rana, M., Kaushik, D., & Srivastava, S. (2024) Trichoderma and their secondary metabolites - A potential approach in plant disease management. Biopesticides International, 20(1), 21-33. https://doi.org/10.59467/BI.2024.20.21

Morais, E. M., Silva, A. A. R., de Sousa, F. W. A., de Azevedo, I. M. B., Silva, H. F., Santos, A. M. G., Beserra (j), J. E. A., de Carvalho, C. P., Eberlin, M. N., Porcari, A. M., da Silva Araújoet, F. D. (2022). Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLOS ONE, 17(4), e0265824. https://doi.org/10.1371/journal.pone.0265824

Nielsen, K. F., Gräfenhan, T., Zafari, D., & Thrane, U. (2005). Trichothecene Production by Trichoderma brevicompactum. Journal of Agricultural and Food Chemist, 53(21), 8190-8196. https://doi.org/10.1021/jf051279b

Oliveira, A. C. R., De Oliveira, F. S., Bráz, A. F., Oliveira, J. S., Lima-Santos, J., & Dias, A. A. M. (2024). Unveiling the anticancer potential of the ethanolic extract from Trichoderma asperelloides. Frontiers in Pharmacology, 15, 1398135. https://doi.org/10.3389/fphar.2024.1398135

Qureshi, A. A., Prentice, N., Din, Z. Z., Burger, W. C., Elson, C. E., & Sunde, M. L. (1984). Influence of culture filtrate of Trichoderma viride and barley on lipid metabolism of laying hens. Lipids, 19(4), 250-257. https://doi.org/10.1007/BF02534452

Saleh, R. M., Kabli, S. A., Al-Garni, S. M., & Mohamed, S. A. (2011). Screening and production of antibacterial compound from Trichoderma spp. against human-pathogenic bacteria. African Journal of Microbiology Research, 5(13), 1619-1628. https://doi.org/10.5897/AJMR11.197

Savchuk, Ya. I., Yurieva, O. M., Syrchin, S. O., Nakonechna, L. T., Tugay, T. I., Tugay, A. V., Tsyhanenko, K. S., Pavlychenko, A. K., & Kurchenko, I. M. (2022). Trichoderma strains - antagonists of plant pathogenic micromycetes. Mikrobiolohichnyi Zhurnal, 84(1), 24-38. https://doi.org/10.15407/microbiolj84.01.020

Sobowale, A., Uzoma, L., Aduramigba-Modupe, A., & Bamkefa, B. (2022). Fungitoxicity of Trichoderma longibrachiatum (Rifai) metabolites against Fusarium oxysporum, Aspergillus niger and Aspergillus tamarii. American Journal of Plant Sciences, 13, 984-993. https://doi.org/10.4236/ajps.2022.137065

Stracquadanio, C., Quiles, J. M., Meca, G., & Cacciola, S. O. (2020). Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. Journal of fungi (Basel), 6(4), 263. https://doi.org/10.3390/jof6040263

Tabarestani, M. S., Rahnama, K., Jahanshahib, M., Nasrollahnezhad, S., & Fatemi, M. H. (2017). Extraction and identification of secondary metabolites produced by Trichoderma atroviridae (6022) and evaluating of their antifungal effects. Journal of Plant Protection, 31(1), 131-141.

Tarus, P. K., Lang'at-Thoruwa, C. C., Wanyonyi, A.W., & Chhabra, S.C. (2003). Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. Bulletin of the Chemical Society of Ethiopia, 17(2), 185-190. https://doi.org/10.4314/bcse.v17i2.61675

Vinale, F., Flematti, G., Sivasithamparam, K., Lorito, M., Marra, R., Skelton, B. W., & Ghisalberti, E. L. (2009). Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. Journal of natural product, 72(11), 2032-2035. https://doi.org/10.1021/np900548p

Weindling, R. (1937). Isolation of toxic substances from the culture filtrates of Trichoderma and Gliocladium. Phytopathology, 27, 1175-1177.

Zhang, J. L., Tang, W. L., Huang, Q. R., Li, Y. Z., Wei, M. L., Jiang, L. L., Liu, C., Yu, X., Zhu, H. W., Chen, G. Z., & Zhang, X. X. (2021). Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance. Frontiers in Microbiology, 12, 723828. https://doi.org/10.3389/fmicb.2021.723828

Zhang, S., Sun, F., Liu, L., Bao, L., Fung, W., Yin, C., & Zhang, Y. (2020). Dragonfly-associated Trichoderma harzianum QTYC77 is not only a potential biological control agent of Fusarium oxysporum f. sp. cucumerinum but also a source of new antibacterial agents. Journal of Agricultural and Food Chemistry, 68(48), 14161-14167. https://doi.org/10.1021/acs.jafc.0c05760

Published

2025-05-03

How to Cite

Sazonova, K., Andrienko, O., Tsyhanenko, K., Yurieva, O., Syrchin, S., Pavlychenko, A., Maliarenko, Y., & Savchuk, Y. (2025). Antifungal Activity of Non-Volatile Low-Molecular-Weight Exometabolites of Trichoderma spp. Strains Against Phytopathogenic Micromycetes. Mikrobiolohichnyi Zhurnal, 87(2), 47-59. https://doi.org/10.15407/