Antiviral Activity of Composition of Sulfur and Iodine Nanoparticles
DOI:
https://doi.org/10.15407/Keywords:
nanoparticles, S and I nanoparticle composition, Teschovirus A, Potato virus Y, virucidal activityAbstract
The search for new antiviral substances is of great scientific and practical importance. One of the industries requiring the development and implementation of new antiviral and disinfectant agents is agriculture. Advances in nanotechnology open up broad prospects for the production and use of non-metal nanoparticles (NPs) for the development of antiviral drugs. The study aimed to examine the activity of S and I NP compositions against the porcine enterovirus encephalomyelitis virus Teschovirus A (PTV-1) and potato acropetal necrosis virus Y (PVY). Methods. The antiviral activity of the S and I NP compositions against Teschovirus A was determined in a pig embryo kidney cell culture. The virus titer in the control and study variants was calculated using the Reed and Mench method. The antiviral activity of the S and I NP composition against PVY was determined on indicator plants. The infection presence in indicator plants was determined by visual observation and serological methods. The interaction between NP and viruses was studied using transmission electron microscopy (TEM). Results. According to the virucidal studies, S and I NP composition exhibits high antiviral activity against the PTV-1 Dniprovskyi 34 strain, reducing the virus titer by 5.0 lg TCD50/cm3, and has a chemotherapeutic index of 8. The TEM analysis established that the S and I NPcomposition leads to PTV-1 morphology changes and does not exhibit antiviral activity against the PVY virus. The potential mechanism of the S and I NP composition’s antiviral activity against the PTV-1 Dniprovskyi 34 virus strain may lie in the direct binding of NPs to the viral surface. Adsorbed NPs are transformed into active forms, damaging capsid proteins. The resistance of PVY to the S and I NP composition is due to the fact that viral capsids do not contain areas enriched with NH-, SH-, and phenolic groups on the surface vulnerable to active forms of S and I. Conclusions. The S and I NP composition can be recommended for the creation of antiviral drugs and disinfectants against teschoviruses.
Downloads
References
Abou Elez, R. M. M., Attia, A. S. A., Tolba, H. M. N., Anter, R. G. A., & Elsohaby, I. (2023). Molecular identification and antiprotozoal activity of silver nanoparticles on viability of Cryptosporidium parvum isolated from pigeons, pigeon fanciers and water. Sci Rep, 13, Article 3109. https://doi.org/10.1038/s41598-023-30270-2
Bazhanov, N., Escaffre, O., Freiberg, A. N., Garofalo, R. P., & Casola, A. (2017). Broad-range antiviral activity of hydrogen sulfide against highly pathogenic RNA viruses. Sci Rep, 7(1), 1-12. https://doi.org/10.1038/srep41029
Benelli, G. (2018a). Gold nanoparticles - against parasites and insect vectors. Acta Trop, 178, 73-80. https://doi.org/10.1016/j.actatropica.2017.10.021
Benelli, G. (2018b). Mode of action of nanoparticles against insects. Environ Sci Pollut Res Int, 25(13), 12329-12341. https://doi.org/10.1007/s11356-018-1850-4
Chakraborty, A., Diwan, A., & Tatake, J. (2023). Prospect of nanomaterials as antimicrobial and antiviral regimen. AIMS Microbiol, 9(3), 444-466. https://doi.org/10.3934/microbiol.2023024
Choudhury, S. R., Roy, S., Goswami, A., & Basu, S. (2012). Polyethylene glycol-stabilized sulphur nanoparticles: an effective antimicrobial agent against multidrug-resistant bacteria. Journal of Antimicrobial Chemotherapy, 67(5), 1134-1137. https://doi.org/10.1093/jac/dkr591
Choudhury, S. R., Mandal, A., Chakravorty, D., Gopal, M., & Goswami, A. (2013a). Evaluation of physicochemical properties, and antimicrobial efficacy of monoclinic sulfur-nanocolloid. Journal of Nanoparticle Research, 15(4), Article 1491. https://doi.org/10.1007/s11051-013-1491-y
Choudhury, S. R., Mandal, A., Ghosh, M., Basu, S., Chakravorty, D., & Goswami, A. (2013b). Investigation of antimicrobial physiology of orthorhombic and monoclinic nanoallotropes of sulfur at the interface of transcriptome and metabolome. Appl Microbiol Biotechnol, 97(13), 5965-5978. https://doi.org/10.1007/s00253-013-4789-x
Clement, C., Capriotti, J. A., Kumar, M., Hobden, J. A., Foster, T. P., Bhattachrjee, P. S., Thompson, H. W., Mahmud, R., Liang B., & Hill J. M. (2011). Clinical and antiviral efficacy of an ophthalmic formulation of dexamethasone povidone-iodine in a rabbit model of adenoviral keratoconjunctivitis. Investigative ophthalmology & visual science, 52(1), 339-344. https://doi.org/10.1167/iovs.10-5944
Cressie, N. A. C., & Whitford, H. J. (1986). How to use the two sample t‐test. Biometrical Journal, 28(2), 131-148. https://doi.org/10.1002/bimj.4710280202
Derevianko, S., Vasylchenko, A., Kaplunenko, V., Holovko, A., Spivak, M., & Kharchuk, M. (2019a). Perspectives of development of preparations for agriculture on the basis of nano-particles. Bulletin of Agricultural Science, 97(10), 44-54. https://doi.org/10.31073/agrovisnyk201910-07
Derevianko, S., Reshotko, L., Vasylchenko, A., & Kharchuk, M. (2019b). Toxicity of the composition of non-metal nanoparticles in pig kidney culture cell. Аgroecological Journal, 4, 107-111. https://doi.org/10.33730/2077-4893.4.2019.189467
Derevianko, S., & Vasylchenko, A. (2020). Anti-virus properties of titanium nano-particles. Bulletin of Agricultural Science, 98(8), 46-51. https://doi.org/10.31073/agrovisnyk202008-06
Derevianko, S., Vasylchenko, A., Kaplunenko, V., Kharchuk, M., Demchenko, O., & Spivak, M. (2022). Antiviral properties of cerium nanoparticles. Acta Univ Agric et Silvic Mendelianae Brun, 70(3), 187-204. https://doi.org/10.11118/actaun.2022.014
Deshpande, A. S., Khomane, R. B., Vaidya, B. K., Joshi, R. M., Harle, A. S., & Kulkarni, B. D. (2008). Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in w/o microemulsion. Nanoscale Research Letters, 3(6), 221-229. https://doi.org/10.1007/s11671-008-9140-6
do Carmo Neto, J. R., Guerra, R. O., Machado, J. R., Silva, A. C. A., & da Silva, M. V. (2022). Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr Med Chem, 29(12), 2127-2141. https://doi.org/10.2174/0929867328666210709105850
Dop, R. A., Neill, D. R., & Hasell, T. (2023). Sulfur-polymer nanoparticles: preparation and antibacterial activity. ACS Appl Mater Interfaces, 15(17), 20822-20832. https://doi.org/10.1021/acsami.3c03826
Falkenberg, T., Larsson, O., Hedin, B., Shiraki, S., & Karita, T. (2023). Iodine loaded nanoparticles with commercial applicability increase survival in mice cancer models with low degree of side effects. Cancer Rep (Hoboken), 6(8), Article e1843. https://doi.org/10.1002/cnr2.1843
Faten, Z., Mustafa, H., & Muayad, A. L. D. (2018). Synthesis of nano sulfur particles and their antitumor activity. Antitumor activity journal of microbial & biochemical technology, 10(3), 59-68. https://doi.org/10.4172/1948-5948.1000397
Feghi, M., Makhmalzadeh, S., Masihpour, N., Amin, M., & Mortazavinia, N. (2023). Investigating the effect of eye drops based on iodine nanoparticles in the treatment of corneal ulcers in rabbit eyes. J Ophthalmic Inflamm Infect, 13(1), Article 47. https://doi.org/10.1186/s12348-023-00367-w
Gao, T., Fan, H., Wang, X., Gao, Y., Liu, W., Chen, W., Dong, A., & Wang, Y-J. (2017). Povidone-iodine-based polymeric nanoparticles for antibacterial applications. ACS Appl Mater Interfaces, 9(31), 25738-25746. https://doi.org/10.1021/acsami.7b05622
Gavas, S., Quazi, S., & Karpiński, T. M. (2021). Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett, 16, Article 173. https://doi.org/10.1186/s11671-021-03628-6
Gogoi, R., Singh, P. K., Kumar, R., Nair, K. K., Alam, I., Srivastava, C., Yadav, S., Gopal, M., Choudhury, S. R., & Goswami, A. (2013). Suitability of nano-sulphur for biorational management of powdery mildew of okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum. Journal of Plant Pathology & Microbiology, 4(4), Article 171. https://doi.org/10.4172/2157-7471.1000171
Gupta, J., Irfan, M., Ramgir, N., Muthe, K. P., Debnath, A. K., Ansari, S., Gandhi, J., Ranjith-Kumar, C. T., & Surjit, M. (2022). Antiviral activity of zinc oxide nanoparticles and tetrapods against the hepatitis E and hepatitis C viruses. Front Microbiol, 13, Article 881595. https://doi.org/10.3389/fmicb.2022.881595
Hainfeld, J. F., Ridwan, S. M., Stanishevskiy, F. Y., & Smilowitz, H. M. (2020). Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci Rep, 10(1), Article 15627. https://doi.org/10.1038/s41598-020-72268-0
Hainfeld, J. F., Ridwan, S. M., Stanishevskiy, Y., & Smilowitz, H. M. (2022). Iodine nanoparticles (Niodx™) for radiotherapy enhancement of glioblastoma and other cancers: an NCI nanotechnology characterization laboratory study. Pharmaceutics, 14(3), Article 508. https://doi.org/10.3390/pharmaceutics14030508
Hashem, N. M., Hosny, A. E. M. S., Abdelrahman, A. A., & Zakeer, S. (2021). Antimicrobial activities encountered by sulfur nanoparticles combating staphylococcal species harboring scc mecA recovered from acne vulgaris. AIMS Microbiol, 7(4), 481-498. https://doi.org/10.3934/microbiol.2021029
Hoey, E. M. (2002). Teschovirus. In: Tidona, C. A., Darai, G., & Büchen-Osmond, C. (Eds.). The Springer Index of Viruses. pp. 785-789. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29719-7_137
Huliaieva, H., Pasichnyk, L., Kharchuk, M., Kalinichenko, A., Patyka, V., Bohdan, M., & Maksin, V. (2020). Influence of citrates nanoparticles on morphological traits of bacterial cells Pseudomonas syringae pv. atrofaciens. Agriculture & Forestry, 66(1), 23-31. https://doi.org/10.17707/AgricultForest.66.1.03
Hussain, F. S., Abro, N. Q., Ahmed, N., Memon, S. Q., & Memon, N. (2022). Nano-antivirals: a comprehensive review. Front Nanotechnol, 4, Article 1064615. https://doi.org/10.3389/fnano.2022.1064615
Hussein, E. M., Ahmed, S. A., Mokhtar, A. B., Elzagawy, S. M., Yahi, S. H., Hussein, A. M., & El-Tantawey, F. (2018). Antiprotozoal activity of magnesium oxide (MgO) nanoparticles against Cyclospora cayetanensis oocysts. Parasitol Int, 67(6), 666-674. https://doi.org/10.1016/j.parint.2018.06.009
Ito, H., Ito, T., Hikida, M., Yashiro, J., Otsuka, A., Kida, H., & Otsuki, K. (2006). Outbreak of highly pathogenic avian influenza in Japan and anti-influenza virus activity of povidone-iodine products. Dermatology, 212(1), 115-118. https://doi.org/10.1159/000089210
Kariwa, H., Fujii, N., & Takashima, I. (2004). Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions, and chemical reagents. Japanese Journal of Veterinary Research, 52(3), 105-112.
Kher, L., Santoro, D., Kelley, K., Gibson, D., & Schultz, G. (2022). Effect of nanosulfur against multidrug-resistant Staphylococcus pseudintermedius and Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 106(8), 3201-3213. https://doi.org/10.1007/s00253-022-11872-8
Kosinov, M. V., & Kaplunenko V. H. (2007). Method of erosion-explosive dispersion of metals. Patent of Ukraine No. 23550. [In Ukrainian].
Li, L., Pan, H., Deng, L., Qian, G., Wang, Z., Li, W., & Zhong, C. (2022). The antifungal activity and mechanism of silver nanoparticles against four pathogens causing kiwifruit post-harvest rot. Front Microbiol, 13, Article 988633. https://doi.org/10.3389/fmicb.2022.988633
Lozovski, V., Lysenko, V., Piatnytsia, V., Scherbakov, O., Zholobak, N., & Spivak, M. (2012). Physical point of view for antiviral effect caused by the interaction between the viruses and nanoparticles. Journal of Bionanoscience, 6(2), 109-112. https://doi.org/10.1166/jbns.2012.1084
Merkl, P., Long, S., McInerney, G. M., & Sotiriou, G. A. (2021). Antiviral activity of silver, copper oxide and zinc oxide nanoparticle coatings against SARS-CoV-2. Nanomaterials (Basel), 11(5), Article 1312. https://doi.org/10.3390/nano11051312
Mundekkad, D., & Cho, W. C. (2022). Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci, 23(3), Article 1685. https://doi.org/10.3390/ijms23031685
Naumenko, K., Zahorodnia, S., Pop, C. V., & Rizun, N. (2023). Antiviral activity of silver nanoparticles against the influenza A virus. J Virus Erad, 9(2), Article 100330. https://doi.org/10.1016/j.jve.2023.100330
Nefedova, A., Rausalu, K., Zusinaite, E., Vanetsev, A., Rosenberg, M., Koppel, K., Lilla, S., Visnapuu, M., Smits, K., Kisand, V., Tätte, T., & Ivask, A. (2022). Antiviral efficacy of cerium oxide nanoparticles. Sci Rep, 12(1), Article 18746. https://doi.org/10.1038/s41598-022-23465-6
Nie, D., Li, J., Xie, Q., Ai, L., Zhu, C., Wu, Y., Gui, Q., Zhang, L., & Tan, W. (2023). Nanoparticles: a potential and effective method to control insect-borne diseases. Bioinorg Chem Appl, Article 5898160. https://doi.org/10.1155/2023/5898160
Pankivska, Y. B., Biliavska, O. Y., Zagornyim M. M., Raguliam A. V., Kharchuk, M. S., & Zagorodnya, S. D. (2019). Antiadenoviral activity of titanium dioxide nanoparticles. Mikrobiolohichnyi Zhurnal, 81(5), 73-84. https://doi.org/10.15407/microbiolj81.05.073
Rai, M., Deshmukh, S. D., Ingle, A. P., Gupta, I. R., Galdiero, M., & Galdiero, S. (2016a). Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology, 42(1), 46-56. https://doi.org/10.3109/1040841X.2013.879849
Rai, M., Ingle, A. P., & Paralikar, P. (2016b). Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine. Expert Review of Anti-Infective Therapy, 14(10), 969-978. https://doi.org/10.1080/14787210.2016.1221340
Reed, L. J., & Muench, H. (1938). A simple method of estimation of fifty per cent endpoints. The American Journal of Hygiene, 27(3), 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
Ribeiro, L. G., Roque, G. S. C., Conrado, R., & De Souza, A. O. (2023). Antifungal activity of mycogenic silver nanoparticles on clinical yeasts and phytopathogens. Antibiotics (Basel), 12(1), Article 91. https://doi.org/10.3390/antibiotics12010091
Sadek, M. E., Shabana, Y. M., Sayed-Ahmed, K., & Tabl, A. H. A. (2022). Antifungal activities of sulfur and copper nanoparticles against cucumber postharvest diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum. J Fungi (Basel), 8(4), Article 412. https://doi.org/10.3390/jof8040412
Saleh, M., Abdel-Baki, A-A., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2017). Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis. Parasitology, 144(13), 1802-1810. https://doi.org/10.1017/S0031182017001184
Shankar, S., Jaiswal, L., & Rhim, J-W. (2020). New insight into sulfur nanoparticles: synthesis and applications. Critical Reviews in Environmental Science and Technology, 51(5),1-28. https://doi.org/10.1080/10643389.2020.1780880
Sriwilaijaroen, N., Wilairat, P., Hiramatsu, H., Takahashi, T., Suzuki, T., Ito, M., Ito, Y., Masato, T., & Suzuki Y. (2009). Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities. Virology journal, 6(1), 1-10. https://doi.org/10.1186/1743-422X-6-124
Suleiman, M., Al-Masri, M., Ali, A. A., Aref, D., Hussein, A., Saadeddin, I., & Warad, I. (2015). Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. J Mater Environ Sci, 6(2), 513-518.
Suleiman, M., Alali, A., Abu-Rayyan, A., Aljayyousi, N., Alkanad, K., El-khatatneh, N., Almaqashah, M., Zarrouk, A., Kumara, K., & Warad, I. (2023). Sulfur nanoparticle as an effective HEK-293 anticancer agent. Moroccan Journal of Chemistry, 11(2), 434-443.
Sun, Y., Wang, X., Fan, L., Xie, X., Miao, Z., Ma, Y., He, T., & Zha, Z. (2020). Facile synthesis of monodisperse chromogenic amylose-iodine nanoparticles as an efficient broad-spectrum antibacterial agent. J Mater Chem B, 8(15), 3010-3015. https://doi.org/10.1039/D0TB00161A
Sun, Y., Jiang, Y., Li, Y., Wang, Q., Zhu, G., Yi, T., Wang, Q., Wang, Y., Dhankher, O. P., Tan, Z., Lynch, I., White, J. C., Rui, Y., & Zhang, P. (2024). Unlocking the potential of nanoscale sulfur insustainable agriculture. Chem Sci, 15, Article 4709. https://doi.org/10.1039/D3SC06122A
Thakur, S., Barua, S., & Karak, N. (2015). Self-healable castor oil based tough smart hyperbranched polyurethane nanocomposite with antimicrobial attributes. RSC Adv, 5(3), 2167-2176. https://doi.org/10.1039/C4RA11730A
Vasylchenko, A., & Derevianko, S. (2021). Antifungal activity of a composition of selenium and iodine nanoparticles. Acta Uni Agric Silvic Mendelianae Brun, 69(4), 491-500. https://doi.org/10.11118/actaun.2021.044
You, Y., Zhu, Y-X., Jiang, J., Chen, Z., Wu, C., Zhang, Z., Lin, H., & Shi, J. (2023). Iodinene nanosheet-to-iodine molecule allotropic transformation for antibiosis. Journal of the American Chemical Society, 145(24), 13249-13260. https://doi.org/10.1021/jacs.3c02669
Yates, K. A., Shanks, R. M., Kowalski, R. P., & Romanowski, E. G. (2019). The in vitro evaluation of povidone-iodine against multiple ocular adenoviral types. Journal of Ocular Pharmacology and Therapeutics, 35(2), 132-136. https://doi.org/10.1089/jop.2018.0122
Zahorodnia, S. D., Naumenko, K. S., Zaichenko, O. V., Zaremba, P. Y., Baranova, G. V., & Holovan, A. V. (2022). Effect of metal nanoparticles on EBV-associated cell culture. Mikrobiolohichnyi Zhurnal, 84(5), 30-37. https://doi.org/10.15407/microbiolj84.05.030
Zahran, F., Hammadi, M., Al-dulaimi, M., & Sebaiy, M. (2018). Potential role of sulfur nanoparticles as antitumor and antioxidant in mice. Der Pharmacia Lettre, 10(5), 7-26.
Published
Issue
Section
License
Copyright (c) 2025 Mikrobiolohichnyi Zhurnal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.