Effect of Nanoparticles of Different Nature on the Adenosine Triphosphatase Activity of Azotobacter vinelandii IMV B-7076 and Bacillus subtilis IMV B-7023
DOI:
https://doi.org/10.15407/microbiolj86.06.012Keywords:
Azotobacter vinelandii, Bacillus subtilis, ATPase, silicon dioxide, bentonite, NP'sAbstract
Under soil conditions, bacteria interact with nanoparticles of natural nanomaterials and ions. The study of such interaction and its effect on ATPase activity of bacteria is an important issue contributing to the understanding of the mechanisms underlying the functioning of living cells in their interaction with nanomaterials. Objective. To investigate ATPase activity of nitrogen-fixing and phosphate-mobilizing bacteria exposed to silica and bentonite nanoparticles and some ions. Methods. ATPase activity of the culture was determined by the concentration of phosphate in the reaction mixture. Silica and bentonite were used as effectors for ATPase activity determination. Results. The level of ATPase activity of Azotobacter vinelandii IMV B-7076 was shown to increase by 241 % after 48 hours of culturing and by 97 % after 72 hours of culturing compared to 24-hr culture. Magnesium and calcium cations were found to significantly increase ATPase activity of A. vinelandii and B. subtilis, whereas sodium and potassium ions had little effect on this process. Conclusions. The ATPase activity of Azotobacter vinelandii IMV B-7076 and Bacillus subtilis IMV B-7023 was found to be the highest in the presence of magnesium and calcium ions. The interaction of these strains with bentonite nanoparticles significantly stimulated the ATPase activity of the bacteria, while silica nanoparticles negatively affected the ATPase activity of A. vinelandii and positively affected that of B. subtilis.
Downloads
References
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Chobotarov, A., Volkogon, M., Voytenko, L., & Kurdish, I. (2017). Accumulation of phytohormones by soil bacteria Azotobacter vinelandii and Bacillus subtilis under the influence of nanomaterials. Journal of Microbiology, Biotechnology and Food Sciences, 7(3), 271-274. https://doi.org/10.15414/jmbfs.2017/18.7.3.271-274
Chobotarov, A., Kurdish, I., & Gritsay, R. (2020). Effect of nanoparticles of natural minerals, iron and mangan compounds, on the growth and superoxide dismutase activity of Bacillus subtilis IMV B-7023. Journal of Microbiology, Biotechnology and Food Sciences, 10(1), 130-133. https://doi.org/10.15414/jmbfs.2020.10.1.130-133
Costerton, J. W. (1985). Phenomena of bacterial adhesion. In J. W. Costerton, M. J. Marrie, K. J. Cheng (Eds.), Bacterial adhesion: Mechanism and physiological significance (pp. 3-43). Plenum press. https://doi.org/10.1007/978-1-4615-6514-7_1
Dalal, R. C. (1998). Soil microbial biomass - what do the numbers really mean? Aust J Expt Agric, 38, 649-665. https://doi.org/10.1071/EA97142
Gruzina, T. G., Balakina, M. N. & Karamushka, V. I. (1997). ATPase of bacterial plasma membranes in assessing the toxicity of heavy metals. Microbiology, 66 (1), 14-18.
Grycova, L., Sklenovsky, P., Lansky, Z., Janovska, M., Otyepka, M., Amler, E., Teisinger, J., & Kubala, M. (2009). ATP and magnesium drive conformational changes of the Na+/K+-ATPase cytoplasmic headpiece. Biochimica et biophysica acta, 1788(5), 1081-1091. https://doi.org/10.1016/j.bbamem.2009.02.004
Iutynska, G. O., Biliavska, L. O., Babich, O. A., Tsygankova, V. A., Babich, A. G. (Eds.). (2019). Plant protection and bioregulation in modern agriculture. Diamond trading.
Kurdish, I. K. (2010). Introduction of microorganisms into agroecosystems. Naukova dumka.
Kurdish, I. K. (2019). Interaction of Microorganisms with Nanomaterials as a Basis for Creation of High-Efficiency Biotechnological Preparations. Nanotechnology in the Life Sciences, 259-287. https://doi.org/10.1007/978-3-030-17061-5_11
Kurdish, I. K., Roy, A. A., & Skoroсhod, I. A. (2021). Efficiency of the Complex Bacterial Preparation Azogran Application in Protecting Potatoes from the Colorado Potato Beetle Depending on the Stage of Its Development. Mikrobiolohichnyi Zhurnal, 83(1), 3-11. https://doi.org/10.15407/microbiolj83.01.003
Kushkevich, I., Hnatush, S., & Gudz, S. (2007). Influence of heavy metals on cells of microorganisms. Bulletin of Lviv University, Biological series, 45, 3-28.
Nannipieri, P., Ascher, J. & Ceccherini, M. T. (2003). Microbial diversity and soil functions. Eur J Soil Sci, 54 (4), 655-670. https://doi.org/10.1046/j.1351-0754.2003.0556.x
Patyka, V. P., Makarenko, N. A., Moklyarchuk, L. I. (Eds.). (2005). Agroecological assessment of mineral fertilizers and pesticides. Kyiv:Osnova.
Pradet, A., & Raymond, P. (1983). Adenine Nucleotide Ratios and Adenylate Energy Charge in Energy Metabolism. Annual Review of Plant Physiology, 34, 199-224. https://doi.org/10.1146/annurev.pp.34.060183.001215
Roy, A. A., Nikonenko, V. U. & Gvozdyak, P. I. (1982). Influence of the method of disintegration of Bacillus subtilis 21/3 cells on the enzymatic activity of cell-free extracts. Microbiological Journal, 44 (1), 15-17.
Skorochod, I. A., Ulziijargal, E., Кurdish, I. K., Gorgo, Yu. P. (2020). Influence of a nanocomposite biological product of Azogran on barley seeds exposed to oxidative stress. Scientific Light, 36, 10-14. https://doi.org/10.29322/IJSRP.10.04.2020.p10016
Skulachev, V. P. (1989). Bioenergetics. Membrane energy converters. Higher school.
Sparling, G. P. (1997). Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In C. E. Pankhurst, B. M. Doube, V. Gupta (Eds.), Biological indicators of soil health (pp. 97-119). CAB International, Wallingford.
Srivastava, S., Verma, P. C., Chaudhry, V., Singh, N., Abhilash, P. C., Kumar, K. V., Sharma, N., & Singh, N. (2013). Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern Var R-46. Journal of Hazardous Materials, 262, 1039-1047. https://doi.org/10.1016/j.jhazmat.2012.08.019
State Enterprise "Ukrainian Intellectual Property Institute". (2006). Shtam Azotobacter vinelandii dlya oderzhannya bakterialnoho preparatu dlya roslynnytstva (No. 72856). https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=25744
State Enterprise "Ukrainian Intellectual Property Institute". (2003). Strain of bacteria Bacillus subtilis for bacterial fertilizer obtaining for plant-growing (No. 54923A). https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=61355
Subramanian, S. (2022). Mechanism of ATPase. News-Medical. https://www.news-medical.net/life-sciences/Mechanism-of-ATPase.aspx
Swaminathan, R. (2003). Magnesium metabolism and its disorders. The Clinical biochemist. Reviews, 24(2), 47-66.
Varbanets, L. D. (1974). ATPase activity of Azotobacter chroococcum membranes. Microbiological Journal, 34(4), 416-418.
Volkogon, V. V., Nadkernychna, O. V., Kovalevska, T. M. (Eds.). (2006). Microbial preparations in agriculture. Theory and practice. Kyiv. Agrarian science.
Zvyagintsev, D. G. (1973). Interaction of microorganisms with solid surfaces. MGU.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mikrobiolohichnyi Zhurnal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.