Giant DNA Viruses Infecting Unicellular Protists
DOI:
https://doi.org/10.15407/microbiolj85.04.072Keywords:
giant virus, protists, mimiviruses, MimiviridaeAbstract
Giant viruses (GV) are widespread in various ecosystems and ecological niches of the biosphere, most commonly in marine and freshwater aquatic ecosystems and soils. These viruses infect protists, a paraphyletic group of various unicellular, syncytial, and protozoan multicellular eukaryotes that are not true animals, plants, or fungus. The morphologically and functionally diverse group of protists includes parasites, commensals, or mutualistic symbionts of eukaryots, as well as heterotrophs, autotrophs, and mixotrophs. These giant viruses are currently classified into several families: Mimiviridae, Pithoviridae, Pandoraviridae, Phycodnaviridae, and the Mollivirus genus. GVs of unicellular protists belonging to the Mimiviridae family mainly infect the species of the Acanthamoeba genus. In this review, we provide the available information concerning giant viruses of the Mimiviridae family infecting other protists. These viruses include: Phaeocystis globosa virus PgV-16T (PgV), Aureococcus anophagefferens virus (AaV), Bodo saltans virus (BsV), Chrysochromulina ericina virus (CeV), and Phaeocystis pouchetii virus (PpV), which infect phytoplanktonic protists, as well as a giant virus of microzooplanktonic species, the Cafeteria roenbergensis virus (CroV). The review focuses on the major differences between these viruses and typical objects of current virology, their importance for understanding the evolutionary processes of genomes, genes, proteins, the biosynthetic and defense systems of organisms, as well as the important role of GV in regulating the aquatic microorganisms abundance and species diversity, carbon transfer and nutrient recycling in marine and freshwater reservoirs. Writing this review was motivated by the intention to inspire the interest of scientists in studying viruses as the most widespread biological creatures on Earth and ubiquitous symbiotic partners of all three domains of life.
Downloads
References
La Scola B, Audic S, Robert C, Jungang L, De Lamballerie X, Drancourt M, et al. A giant virus in amoebae. Science. 2003; 299:2033. https://doi.org/10.1126/science.1081867
Forterre P. Viruses in the 21st century: from the curiosity-driven discovery of giant viruses to new concepts and definition of life. Clin Infect Dis. 2017; 65:74-79. https://doi.org/10.1093/cid/cix349
Claverie JM, Abergel C. Giant viruses: update, enigmas, controversies and perspectives. Med Sci (Paris). 2016; 32:1087-1096. (in French) https://doi.org/10.1051/medsci/20163212012
Koonin EV, Yutin N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv Virus Res. 2019; 103:167-202. https://doi.org/10.1016/bs.aivir.2018.09.002
Brandes N, Linial M. Giant Viruses-Big Surprises. Viruses. 2019; 11(5):404. https://doi.org/10.3390/v11050404
Sharma V, Colson P, Pontarotti P, Raoult D. Mimivirus inaugurated in the 21st century the beginning of a reclassification of viruses. Curr Opin Microbiol. 2016; 31:16-24. https://doi.org/10.1016/j.mib.2015.12.010
Iyer LM, Aravind L, Koonin EV. Common origin of four diverse families of large eukaryotic DNA viruses. J Virol. 2001; 75:11720-34. https://doi.org/10.1128/JVI.75.23.11720-11734.2001
Andrade AC, Arantes TS, Rodrigues RAL, Machado TB, Dornas FP, Landell MF, et al. Ubiquitous giants: a plethora of giant viruses found in Brazil and Antarctica. Virol J. 2018; 15:22. https://doi.org/10.1186/s12985-018-0930-x
Koonin EV, Dolja VV, Varsani A, Yutin N. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020; 84:e00061-19. https://doi.org/10.1128/MMBR.00061-19
Guglielmini J, Woo AC, Krupovic M, Forterre P, Gaia M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci USA. 2019; 116(39):19585-19592. https://doi.org/10.1073/pnas.1912006116
Koonin EV, Krupovic M, Yutin N. Evolution of double-stranded DNA viruses of eukaryotes: From bacteriophages to transposons to giant viruses. Ann NY Acad Sci. 2015; 1341:10-24. https://doi.org/10.1111/nyas.12728
Gallot-Lavallée L, Blanc G, Claverie JM. Comparative genomics of chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established Mimiviridae family. J Virol. 2017; 91(14):e00230-17. https://doi.org/10.1128/JVI.00230-17
Suttle CA. Marine viruses - Major players in the global ecosystem. Nat Rev Microbiol. 2007; 5:801-812. https://doi.org/10.1038/nrmicro1750
Weitz JS, Wilhelm SW. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep. 2012; 4:17. https://doi.org/10.3410/B4-17
Baudoux AC, Brussaard CP. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology. 2005; 341(1):80-90. https://doi.org/10.1016/j.virol.2005.07.002
Massana R, Del Campo J, Dinter C, Sommaruga R. Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ Microbiol. 2007; 9:2660-2669. https://doi.org/10.1111/j.1462-2920.2007.01378.x
Fischer MG, Allen MJ, Wilson WH, Suttle CA. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci. USA. 2010; 107:19508-19513. https://doi.org/10.1073/pnas.1007615107
Massana R. Protistan diversity in environmental molecular surveys. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine Protists: Diversity and Dynamics. Springer, Tokyo. 2015; 3-21. https://doi.org/10.1007/978-4-431-55130-0_1
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol, 2021;11(3):200407. https://doi.org/10.1098/rsob.200407
Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L, Poulain J, et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. The ISME journal. 2013; 7(9):1678. https://doi.org/10.1038/ismej.2013.59
Mozar M, Claverie JM. Expanding the Mimiviridae family using asparagine synthase as a sequence bait. Virology. 2014; 466:112-122. https://doi.org/10.1016/j.virol.2014.05.013
Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK, Vierheilig J, Jensen GJ. Giant viruses with an expanded complement of translation system components. Science, 2017; 356(6333):82-85. https://doi.org/10.1126/science.aal4657
Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci USA. 2013; 110(26):10800-10805. https://doi.org/10.1073/pnas.1303251110
Moniruzzaman M, Lecleir GR, Brown CM, Gobler CJ, Bidle KD, Wilson WH. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. Virology. 2014; 466-467:60-70. https://doi.org/10.1016/j.virol.2014.06.031
Deeg CM, Chow ECT, Suttle CA. The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea. eLife. 2018; 7:e33014. https://doi.org/10.7554/eLife.33014
Sandaa RA, Heldal M, Castberg T, Thyrhaug R, Bratbak G. Isolation and Characterization of Two Viruses with Large Genome Size Infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology. 2001; 290(2):272-280. https://doi.org/10.1006/viro.2001.1161
Jacobsen A, Bratbak G, Heldal M. Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymnesiophyceae). J Phycol. 1996; 32:923-927. https://doi.org/10.1111/j.0022-3646.1996.00923.x
Fenchel T, Patterson D. Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Mar Microb Food Webs. 1988; 3:9-19.
Garza DR, Suttle CA. Large double-stranded DNA viruses which cause the lysis of a marine heterotrophic nanoflagellate (Bodo sp.) occur in natural marine viral communities. Aquat Microb Ecol. 1995; 9(3):203-210. https://doi.org/10.3354/ame009203
Xiao C, Fischer MG, Bolotaulo DM, Ulloa-Rondeau N, Avila GA, Suttle CA. Cryo-EM reconstruction of the Cafeteria roenbergensis virus capsid suggests novel assembly pathway for giant viruses. Sci Rep. 2017; 7(1):5484. https://doi.org/10.1038/s41598-017-05824-w
Fischer MG, Kelly I, Foster LJ, Suttle CA. The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair. Virology. 2014; 466-467:82-94. https://doi.org/10.1016/j.virol.2014.05.029
Schulz F, Abergel C, Woyke T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat Rev Microbiol. 2022; 20:721-736. https://doi.org/10.1038/s41579-022-00754-5
Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM. The 1.2-megabase genome sequence of Mimivirus. Science. 2004; 306(5700):1344-50. https://doi.org/10.1126/science.1101485
Taylor BP, Weitz JS, Brussaard CPD, Fischer MG. Quantitative Infection Dynamics of Cafeteria Roenbergensis Virus. Viruses. 2018; 10(9):468. https://doi.org/10.3390/v10090468
Colson P, Gimenez G, Boyer M, Fournous G, Raoult D. The Giant Cafeteria roenbergensis Virus That Infects a Widespread Marine Phagocytic Protist Is a New Member of the Fourth Domain of Life. PLoS ONE. 2011; 6(4):e18935. https://doi.org/10.1371/journal.pone.0018935
Brussaard CPD, Short SM, Frederickson CM, Suttle CA. Isolation and phylogenetic analysis of novel viruses infecting the phytoplankter Phaeocystis globosa (Prymnesiophyceae). Appl Environ Microbiol. 2004; 70 (6):3700-3705. https://doi.org/10.1128/AEM.70.6.3700-3705.2004
Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics. Harmful Algae. 2005; 4(5):859-874. https://doi.org/10.1016/j.hal.2004.12.015
Short SM, Staniewski MA, Chaban YV, Long AM, Wang D. Diversity of Viruses Infecting Eukaryotic Algae. Curr Issues Mol Biol. 2020; 39:29-62. https://doi.org/10.21775/cimb.039.029
Chen F, Sutle CA. Evolutionary relationships among large double-stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology. 1996; 219:170-178. https://doi.org/10.1006/viro.1996.0234
Wilson WH, Schroeder DC, Ho J, Canty M. Phylogenetic analysis of PgV-102P, a new virus from the English Channel that infects Phaeocystis globosa. J Mar Biol Assoc. U.K. 2006; 86:485-490. https://doi.org/10.1017/S0025315406013385
Roitman S, Rozenberg A, Lavy T, Brussaard CPD, Kleifeld O, Béjà O. Isolation and infection cycle of a polinton-like virus virophage in an abundant marine alga. Nat Microbiol. 2023; 8(2):332-346. https://doi.org/10.1038/s41564-022-01305-7
Brussaard CPD, Bratbak G, Baudoux AC. Ruardij P. Phaeocystis and its interaction with viruses. Biogeochemistry. 2007; 83:201-215. https://doi.org/10.1007/s10533-007-9096-0
Moniruzzaman M, Gann ER, Wilhelm SW. Infection by a Giant Virus (AaV) Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 - A Harmful Bloom Algae. Front Microbiol. 2018; 9:752. https://doi.org/10.3389/fmicb.2018.00752
Garry RT, Hearing P, Cosper EM. Characterization of a lytic virus infectious to the bloom-forming microalga Aureococcus anophagefferens (Pelagophyceae). J Phycol. 1998; 34:616-621. https://doi.org/10.1046/j.1529-8817.1998.340616.x
Milligan KL, Cosper EM. Isolation of virus capable of lysing the brown tide microalga, Aureococcus anophagefferens. Science. 1994; 266:805-807. https://doi.org/10.1126/science.266.5186.805
Gastrich M, Anderson OR, Cosper E. Viral-like particles (VLPS) in the alga, Aureococcus anophagefferens (Pelagophyceae), during 1999-2000 Brown tide blooms in Little Egg Harbor, New Jersey. Estuaries. 2002; 25:938-943. https://doi.org/10.1007/BF02691342
Rowe JM, Dunlap JR, Gobler CJ, Anderson OR, Gastrich MD, Wilhelm SW. Isolation of a non-phage-like lytic virus infecting Aureococcus anophagefferens. J Phycol. 2008; 44:71-76. https://doi.org/10.1111/j.1529-8817.2007.00453.x
Gobler C, Anderson O, Gastrich M, Wilhelm S. Ecological aspects of viral infection and lysis in the harmful brown tide alga Aureococcus anophagefferens. Aquat Microb Ecol. 2007; 47:25-36. https://doi.org/10.3354/ame047025
Truchon AR, Gann ER, Wilhelm SW. Closed, Circular Genome Sequence of Aureococcus anophagefferens Virus, a Lytic Virus of a Brown Tide-Forming Alga. Microbiol Resour Announc. 2022; 11(7):e00282-22. https://doi.org/10.1128/mra.00282-22
Brown CM, Bidle KD. Attenuation of virus production at high multiplicities of infection in Aureococcus anophagefferens. Virology. 2014; 466-467:71-81. https://doi.org/10.1016/j.virol.2014.07.023
Ankrah NY, May AL, Middleton JL, Jones DR, Hadden MK, Gooding JR, et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 2014; 8:1089-1100. https://doi.org/10.1038/ismej.2013.216
Gann ER, Xian Y, Abraham PE, Hettich RL, Reynolds TB, Xiao C, Wilhelm SW. Structural and Proteomic Studies of the Aureococcus anophagefferens Virus Demonstrate a Global Distribution of Virus-Encoded Carbohydrate Processing. Front Microbiol. 2020; 11:2047. https://doi.org/10.3389/fmicb.2020.02047
Sandaa RA, Saltvedt MR, Dahle H, Wang H, Våge S, Blanc-Mathieu R, et al. Adaptive evolution of viruses infecting marine microalgae (haptophytes), from acute infections to stable coexistence. Biol Rev Camb Philos Soc. 2022; 97(1):179-194. https://doi.org/10.1111/brv.12795
Liu JW, Zheng TL, Bratbak G, Thyrhaug R. Virus infection disturbs cyclin expression, leading to cell cycle arrest in the unicellular marine algae Emiliania huxleyi and Chrysochromulina ericina. Afr J Microbiol Res. 2011; 5(14):1801-1807. https://doi.org/10.5897/AJMR11.109
Duponchel S, Fischer MG. Viva lavidaviruses! Five features of virophages that parasitize giant DNA viruses. PLoS Pathog. 2019; 15(3):e1007592. https://doi.org/10.1371/journal.ppat.1007592
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Mikrobiolohichnyi Zhurnal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.