Weed Plants of the Asteraceae and Malvaceae Families as Reservoirs of Harmful Viruses of Vegetable Crops in Ukraine and the World


  • M.M. Bohdan Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • A.M. Kyrychenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • I.S. Shcherbatenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • H.V. Kraeva Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine




plant viruses, plant virus vectors, plant virus reservoir weeds


The review provides an analysis of the current literature data on the prevalence of weeds of the Asteraceae and Malvaceae families, which act as reservoirs of agricultural plant viruses, in the agroecosystems of both Ukraine and the world. The main focus is on weeds that are common in the agrocenoses of agricultural crops. The primary sources of the main pathogens of viral diseases of vegetable crops (Tomato spotted wilt virus (TSWV), Tomato chlorosis virus (ToCV), Tomato yellow leaf curl virus (TYLCV), Cucumber mosaic virus (CMV), Cucumber vein yellowing virus (CVYV), Iris yellow spot virus (IYSV), and Pepino mosaic virus (PepMV)) in different climatic zones, as well as the main factors contributing to the spread of harmful viruses in agrophytocenoses are analyzed.


Download data is not yet available.


Bomba M.Ia., Bomba M.I. [Weeds in agrophytocenoses and greening of measures to control their numbers]. Bulletin of Uman National University of Horticulture. 2019; 1:15–20. Ukrainian. DOI: https://doi.org/10.31395/2310-0478-2019-1-15-20

Peters K, Breitsameter L, Gerowitt B. Impact of climate change on weeds in agriculture: a review. Agron Sustain Dev. 2014; 34:707–721. DOI: https://doi.org/10.1007/s13593-014-0245-2

Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS. Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Front Plant Sci. 2017; 8:95. DOI: https://doi.org/10.3389/fpls.2017.00095

Kyrychenko AM, Bohdan MM, Snihur HO, Shcherbatenko IS. Weeds as reservoirs of viruses in agrobiocenoses of cereal crops in Ukraine. Mikrobiol Z. 2022; 84(6):72–86. DOI: https://doi.org/10.15407/microbiolj84.06.072

Kyrychenko AM, Bohdan MM, Shcherbatenko IS. Weeds as reservoirs of viruses in agrobiocenoses of legumes in Ukraine. Mikrobiol Z. 2020; 82(6):94–106. Ukrainian. DOI: https://doi.org/10.15407/microbiolj82.06.094

Veselovskyi IV, Manko YuP, Kozubskyi OB. [Handbook of weeds]. Kyiv: Urozhai; 1993. 208 p. Ukrainian.

Roossinck MJ. Plant virus metagenomics: biodiversity and ecology. Ann Review of Genetics. 2012; 46(1):359–369. DOI: https://doi.org/10.1146/annurev-genet-110711-155600

Roossinck MJ. Plants, viruses and the environment: ecology and mutualism. Virology. 2015; 479–480:271–277. DOI: https://doi.org/10.1016/j.virol.2015.03.041

Moreno A, Fereres A. Virus diseases in lettuce in the mediterranean basin. Viruses and virus diseases of vegetables in the mediterranean basin. Advances in Virus Research. 2012; 84:247–288. DOI: https://doi.org/10.1016/B978-0-12-394314-9.00007-5

Zhang Y, Xie Z, Fletcher JD, Wang Y, Wang R, Guo Z, et al. Rapid and sensitive detection of Lettuce necrotic yellows virus and Cucumber mosaic virus infecting lettuce (Lactuca sativa L.) by reverse transcription loop-mediated isothermal amplification. Plant Pathol J. 2020; 36(1):76–86. DOI: https://doi.org/10.5423/PPJ.OA.12.2019.0298

Tomlinson JA. Epidemiology and control of virus diseases of vegetables. Ann App Biol. 1987; 110(3):661–681. DOI: https://doi.org/10.1111/j.1744-7348.1987.tb04187.x

CABI PlantwisePlus Knowledge Bank. Cucumber mosaic virus (cucumber mosaic) www.plantwiseplusknowledgebank.org [2023, March 1]. https://plantwiseplusknowledgebank.org/doi/10.1079/PWKB.20177801267

Rud VP, Ilinova YeM, Mohylna OM, Terokhina LA, Dukhin EO. [Innovative zonally adapted solutions in vegetable farming]. Vegetable and Melon Growing. 2022; 72:89–98. Ukrainian. DOI: https://doi.org/10.32717/0131-0062-2022-72-89-98

Yarovyi HI. [The current state and prospects for the development of vegetable growing in Ukraine]. Vegetable and Melon Growing. 2006; 52:3–14. Ukrainian.

Statista. Agriculture. Farming. Global production volume of vegetables from 2000 to 2021 (in million metric tons) www.statista.com [2023, March 10]. https://www.statista.com/statistics/264059/production-volume-of-vegetables-and-melons-worldwide-since-1990/

Faostat. Statistics Division Food and Agriculture Organization of the United Nations. www.fao.org/home/en/ [2023, March 1]. https://www.fao.org/faostat/en/#data/QCL

Sevidov VP, Sevidov IV. [Modern vegetable growing in Ukraine: state and development problems]. Taurida Scientific Bulletin. 2022; 123:124–129. Ukrainian. DOI: https://doi.org/10.32851/2226-0099.2022.123.17

Mishchenko LT, Chyhryn AV, Yanishevska HS. [Detection of viruses on tomatoes grown under conditions of open and closed soil]. Taurida Scientific Bulletin. 2010; 71(3):45–50. Ukrainian.

Kovalenko OH, Shepelevych VV. Pathogenesis and induced virus resistance in tobacco plants affected by tomato bronze virus. Mikrobiol Z. 2004; 66(2):81–85. Ukrainian.

Rudnieva TO, Shevchenko TP, Tsvihun VO, Shamraichuk VO, Bysov AS, Polishchuk VP. [Viruses of sweet pepper at agrocenosis of Ukraine and seed material. Microbiology and Biotechnology]. Mikrobiolohiia i biotekhnolohiia. 2012; 4(20):29–35. Ukrainian. DOI: https://doi.org/10.18524/2307-4663.2012.4(20).90441

Aldalain E, Shevchenko TP, Polishchuk VP, Mishchenko LT. [Effectiveness of diagnosis of viral diseases of tomatoes]. Bulletin of Agricultural Science. 2015; 06:29–32. Ukrainian.

Dikova B, Mishchenko L, Dunich A, Dashchenko A. Tomato spotted wilt virus on giant hyssop and common valerian in Ukraine and Bulgaria. Bulg J Agric Sci. 2016; 22(1):108–113.

Abudurexiti A, Adkins S, Alioto D. Alkhovsky SV, Avšič-Županc T, Ballinger MJ. et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019; 164:1949–1965. DOI: https://doi.org/10.1007/s00705-019-04253-6

Sherwood JL, German TL, Moyer JW, Ullman DE. Tomato spotted wilt. The Plant Health Instructor. 2003. DOI: https://doi.org/10.1094/PHI-I-2003-0613-02

UC IPM Agriculture Peppers Tomato Spotted Wilt. ipm.ucanr.edu [2023, March 1]. http://ipm.ucanr.edu/PMG/r604100911.html

Grushevoy SE, Segal LA. [Viral disease of tobacco in the western regions of Ukraine]. (Tobacco.). 1955; 16(1):18–19. russian.

Macharia I, Backhouse D, Wu S-B, Ateka EM. Weed species in tomato production and their role as alternate hosts of Tomato spotted wilt virus and its vector Frankliniella occidentalis Ann Appl Biol. 2016; 169(2):224–235. DOI: https://doi.org/10.1111/aab.12297

Riley DG, Joseph SV, Srinivasan R, Diffie S. Thrips vectors of tospoviruses. J Integr Pest Manag. 2011; 2:1–10. DOI: https://doi.org/10.1603/IPM10020

Korsak VV. [Assessment of tobacco breeding material for resistance against tomato bronze virus] (Tomato spotled wilt virus). Agrobiology. 2011; 5(84):82–87. Ukrainian.

Melzer1 MJ, Tripathi S, Matsumoto T, Keith L, Sugano J, Borth WB, et al Tomato spotted wilt. Honolulu (HI): University of Hawaii. (Plant Disease; PD-81). 2012. https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/a3513d00-b059-4b05-aeb3-5961376f8b85/content

Knyazeva YaA, Boyko AL, Smirnova SO. [Reservoirs of tomato bronzing virus in agrocenoses]. Tov-vo “Mizhnar. finn. agency” Kyiv, 1998. Ukrainian.

Nachappa P, Challacombe J, Margolies DC, Nechols JR, Whitfield AE, Rotenberg D. Tomato spotted wilt virus benefits its thrips vector by modulating metabolic and plant defense pathways in tomato. Front Plant Sci. 2020; 11:575–564. DOI: https://doi.org/10.3389/fpls.2020.575564

Bautista RC, Mau RFL, Cho JJ, Custer DM. Potential of Tomato spotted wilt tospovirus plant hosts in Hawaii as virus reservoirs for transmission by Frankliniella occidentalis (Thysanoptera: Thripidae). Phytopathology. 1995; 85:953–958. DOI: https://doi.org/10.1094/Phyto-85-953

Bitterlich I, MacDonald LS. The prevalence of Tomato spotted wilt virus in weeds and crops in southwestern British Columbia. Canadian Plant Disease Survey. 1993; 73(2):137–142.

Storchous I. [Problem weeds in crops]. Agribusiness today. 2014. http://agro-business.com.ua/ [2023, March 10] http://agro-business.com.ua/agro/ahronomiia-sohodni/item/443-problemni-buriany-u-posivakh.html Ukrainian.

CABI Digital Library. Tomato spotted wilt orthotospovirus (tomato spotted wilt). www.cabidigitallibrary.org [2023, March 1]. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.54086

Fletcher JD. New hosts of Alfalfa mosaic virus, Cucumber mosaic virus, Potato virus Y, Soybean dwarf virus, and Tomato spotted wilt virus in New Zealand. New Zealand Journal of Crop and Horticultural Science. 2001; 29(3):213–217. DOI: https://doi.org/10.1080/01140671.2001.9514180

EPPO Global Database. Tomato spotted wilt virus (TSWV00) www.gd.eppo.int [2023, March 10] https://gd.eppo.int/taxon/TSWV00/datasheet

Batuman O, Turini TA, LeStrange M, Stoddard S, Miyao G, Aegerter BJ. et al. Development of an IPM strategy for thrips and Tomato spotted wilt virus in processing tomatoes in the central valley of California. Pathogens. 2020; 9:636. DOI: https://doi.org/10.3390/pathogens9080636

Kil EJ, Chung YJ, Choi HS, Lee S, Kim CS. Life cycle-based host range analysis for Tomato spotted wilt virus in Korea. Plant Pathol J. 2020 Feb;36(1):67–75. DOI: https://doi.org/10.5423/PPJ.FT.12.2019.0290

Jorge TS, Fontes MG, Lima MF, Boiteux LS, Fonseca MEN, Kitajima EW. Natural infection of Cichorium intybus (Asteraceae) by groundnut ringspot virus (genus Orthotospovirus) isolates in Brazil. Plant Disease. 2022; 106(7):2005. DOI: https://doi.org/10.1094/PDIS-06-21-1184-PDN

Takacs A, Jenser G, Kazinczi G, Horvath J, Gaborjanyi R. Natural weed hosts of Tomato spotted wilt virus (TSWV) in Hungary. Cereal Res Comm. 2006; 34:685–688. DOI: https://doi.org/10.1556/CRC.34.2006.1.171

Boyko AL, Knyazeva NA, Kondratyuk OA, Smirnova SO. [Epiphytoic model of the tomato spotted wilt vims infecting sunflower plants]. Biopolym. Cell. 2001; 17(3):230–236. Ukrainian. DOI: https://doi.org/10.7124/bc.0005B0

Fiallo-Olivé E, Navas-Castillo J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol Plant Pathol. 2019; 20(9):1307–1320. DOI: https://doi.org/10.1111/mpp.12847

Tzanetakis IE, Martin RR and Wintermantel WM. Epidemiology of criniviruses: an emerging problem in world agriculture. Front Microbiol. 2013; 4:119. DOI: https://doi.org/10.3389/fmicb.2013.00119

Kil E‐J, Lee J‐J, Cho S, Auh C‐K, Kim D, Lee K‐Y, et al. Identification of natural weed hosts of Tomato chlorosis virus in Korea by RT‐PCR with root tissues. Eur J Plant Pathol. 2015; 142:419–426. DOI: https://doi.org/10.1007/s10658-015-0622-y

Orfanidou CG, Dimitriou C, Papayiannis LC, Maliogka VI and Katis NI. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res. 2014; 186:120–129. DOI: https://doi.org/10.1016/j.virusres.2013.12.013

Kil E‐J, Kim S, Lee Y‐J, Kang E‐H, Lee M, Cho S‐H, et al. Advanced loop‐mediated isothermal amplification method for sensitive and specific detection of Tomato chlorosis virus using a uracil DNA glycosylase to control carry‐over contamination. J Virol Methods. 2015; 213:68–74. DOI: https://doi.org/10.1016/j.jviromet.2014.10.020

Virus Taxonomy: 2019 Release. International Committee on Taxonomy of Viruses (ICTV). www.ictv.global/taxonomy [2023, March 10].

Marchant WG, Gautam S, Hutton SF, Srinivasan R. Tomato yellow leaf curl virus-resistant and -susceptible tomato genotypes similarly impact the virus population genetics. Front Plant Sci. 2020; 11:599–697. DOI: https://doi.org/10.3389/fpls.2020.599697

Nannini M, Testa M, Dellacroce C, Accotto GP. A survey of TYLCD epidemics in Sardinia (Italy) – monitoring the occurrence of disease-associated viruses on weeds and non-tomato crops. Acta Horticulturae. 2011; 914:185–188. DOI: https://doi.org/10.17660/ActaHortic.2011.914.33

Li N, Yu C, Yin Y, Gao S, Wang F, Jiao C and Yao M. Pepper crop improvement against Cucumber mosaic virus (CMV): A Review. Front Plant Sci. 2020; 11:598–798. DOI: https://doi.org/10.3389/fpls.2020.598798

Virus Taxonomy: 2020 Release. International Committee on Taxonomy of Viruses (ICTV). www.ictv.global/taxonomy [2023, March 10]. https://ictv.global/taxonomy/taxondetails?taxnode_id=202102772

Zitter T.A., Murphy J.F. Cucumber mosaic virus. Plant Heal Instr. 2009. DOI: https://doi.org/10.1094/PHI-I-2009-0518-01

Tsvihun V, Sus N, Shevchenko T, Boiko A. [Biological properties of Cucumber mosaic virus of vegetables]. 2020; 12(813):26–31. Ukrainian. DOI: https://doi.org/10.31073/agrovisnyk202012-04

Chernenko V, Chernenko O. [Viral diseases of sweet pepper]. Plantator. 2019; 4. [2023, March 10]. https://agrotimes.ua/article/virusni-hvoroby-solodkogo-perczyu/ Ukrainian.

Melnychuk F, Hordiienko O, Alieksieieva C. [Protection of melon crops]. Proposal. [2023, March 10]. https://propozitsiya.com/ua/zahist-bashtannih-kultur Ukrainian.

Koolivand D, Bashir NS, Mozafari J. Serological andmolecular detection of newly isolated Cucumber mosaic virus variants from Iran. Int J Agr Res Rev. 2012; 2:933–941.

Sikora EJ, Andrianifahanana M, Murphy JF. Detection of cucumber mosaic cucumovirus in weed species: a cautionary report on nonspecific reactions in ELISA. Canadian Journal of Plant Pathology. 1999; 21(4):338–344. DOI: https://doi.org/10.1080/07060669909501169

CABI Digital Library. Iris yellow spot virus (iris yellow spot) www.cabidigitallibrary.org [2023, March 1]. https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.28848#todistributionDatabaseTable

Gorgan NO. [The species composition of onion pathogens during storage in different varieties and hybrids in the conditions of the Nosiv SDS]. Scientific Bulletin of NAU. 2008; 125:140–144. Ukrainian.

Nischwitz C, Gitaitis RD, Mullis SW, Csinos AS, Langston DB Jr, Sparks AN. First report of Iris yellow spot virus in spiny sowthistle (Sonchus asper) in the United States. Plant Dis. 2007; 91(11):1518. DOI: https://doi.org/10.1094/PDIS-91-11-1518C

Bag S, Schwartz HF, Cramer CS, Havey MJ, Pappu HR. Iris yellow spot virus (Tospovirus: Bunyaviridae): from obscurity to research priority. Mol Plant Pathol. 2015;16(3):224–37. DOI: https://doi.org/10.1111/mpp.12177

Hsu CL, Hoepting CA, Fuchs M, Smith EA, Nault BA. Sources of Iris yellow spot virus in New York. Plant Dis. 2011; 95(6):735–743.

Weilner S, Gerhard B. Detection of Iris yellow spot virus (IYSV) in selected Allium species and overwintering hosts in Austrian onion-producing areas. Journal für Kulturpflanzen. 2013; 65(2):60–67.

Kritzman A, Lampel M, Raccah B, Gera A. Distribution and transmission of Iris yellow spot virus. Plant Dis. 2001; 85:838–842. DOI: https://doi.org/10.1094/PDIS.2001.85.8.838

Nischwitz C, Srinivasan R, Sundaraj S, Mullis SW, McInnes B, Gitaitis RD. Geographical distribution and survival of Iris yellow spot virus in spiny sowthistle, Sonchus asper, in Georgia. Plant Dis. 2012; 96(8):1165–1171. DOI: https://doi.org/10.1094/PDIS-09-11-0747-RE

Valouzi H, Golnaraghi A, Rakhshandehroo F. Natural occurrence of Malva vein clearing virus in malva in Iran. New Disease Reports. 2017; 35:15. DOI: https://doi.org/10.5197/j.2044-0588.2017.035.015

Coleman M, Kristiansen P, Sindel B, Fyfe C. Marshmallow (Malva parviflora): Weed management guide for Australian vegetable production. School of Environmental and Rural Science, University of New England, Armidale. 2019. https://www.une.edu.au/__data/assets/pdf_file/0008/281996/une_weeds_mallow.pdf

Virus Taxonomy: 2019 Release. International Committee on Taxonomy of Viruses (ICTV). https://ictv.global/taxonomy [2023, March 10]. https://ictv.global/taxonomy/taxondetails?taxnode_id=202104544

Martelli GP, Gallitelli D. Emerging and reemerging virus diseases of plants. Encyclopedia of Virology. 2008; 86–92. DOI: https://doi.org/10.1016/B978-012374410-4.00705-6

Virus Taxonomy: 2019 Release. International Committee on Taxonomy of Viruses (ICTV). https://ictv.global/taxonomy [2023, March 10]. https://ictv.global/taxonomy/taxondetails?taxnode_id=202102215

van der Vlugt RA, Stijger CM, Verhoeven JTJ, Lesemann DE. First report of Pepino mosaic virus on tomato. Plant Dis. 2000; 84(1):103–108. DOI: https://doi.org/10.1094/PDIS.2000.84.1.103C

Jordá, C., Lázaro Pérez A, Martínez-Culebras PV, Lacasa A. First report of Pepino mosaic virus on natural hosts. Plant Dis. 2001; 85(12):1292. DOI: https://doi.org/10.1094/PDIS.2001.85.12.1292D

Jones RAC, Koenig R, Lesemann DE. Pepino mosaic virus, a new potexvirus from pepino (Solanum muricantum). Ann Appl Biol. 1980; 94:61–68. DOI: https://doi.org/10.1111/j.1744-7348.1980.tb03896.x

Shipp JL, Buitenhuis R, Stobbs L, Wang K, Kim WS, Ferguson G. Vectoring of Pepino mosaic virus by bumblebees in tomato greenhouses. Ann Appl Biol. 2008; 153:149–155. DOI: https://doi.org/10.1111/j.1744-7348.2008.00245.x

Ling KS. Pepino mosaic virus on tomato seed: virus location and mechanical transmission. Plant Dis. 2008; 92:1701–1705. DOI: https://doi.org/10.1094/PDIS-92-12-1701

Salomone A, Roggero P. Host range, seed transmission, and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. J Plant Pathol. 2002; 84:65–68.

Takacs A, Kazinczi G, Horvath J, Gaborjanyi R, Varga L, Jenser G. Relationships between Thysanoptera species and tomato spotted wilt virus (TSWV). Cereal Res. Comm. Suppl. 2008; 95–98.

Jenser G, Almasi A, Kazinczi G, Takacs A, Szenasi A, Gaborjanyi R. Ecological background of the epidemics of Tomato spotted wilt virus in Central Europe. Acta Phytopathologica et Entomologica Hungarica. 2009; 44 (2):213–223. DOI: https://doi.org/10.1556/APhyt.44.2009.2.1

Jordá C, Font I, Lázaro A, Juarez M, Ortega A, Lacasa A. New Natural Hosts of Tomato spotted wilt virus. Plant Dis. 2000; 84(4):489. DOI: https://doi.org/10.1094/PDIS.2000.84.4.489D

Chatzivassiliou EK, Boubourakas I, Drossos E, Eleftherohorinos I, Jenser G, Peters D. et al. Weeds in greenhouses and tobacco fields are differentially infected by Tomato spotted wilt virus and infested by its vector species. Plant Dis. 2001; 85(1):40–46. DOI: https://doi.org/10.1094/PDIS.2001.85.1.40

Groves RL, Walgenbach JF, Moyer JW, Kennedy GG. The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of Tomato spotted wilt virus. Plant Dis. 2002; 86:573–582. DOI: https://doi.org/10.1094/PDIS.2002.86.6.573

Radouane N, Ezrari S, Belabess Z, Tahiri A, Tahzima R, Massart S, et al. Viruses of cucurbit crops:current status in the MediterraneanRegion. Phytopathol Mediterr. 2021; 60(3):493–519. DOI: https://doi.org/10.36253/phyto-12340

Smith EA, DiTommaso A, Fuchs M, Shelton AM, Nault BA. Abundance of weed hosts as potential sources of onion and potato viruses in western New York. Crop protection. 2012; 37:91–96. DOI: https://doi.org/10.1016/j.cropro.2012.02.007

Sampagni RK, Mohan SK, Pappu HR. Identification of new alternative weed hosts for Iris yellow spot virus in the Pacific Northwest. Plant Dis. 2007; 91:1683. DOI: https://doi.org/10.1094/PDIS-91-12-1683B

Hsu CL, Hoepting CA, Fuchs M, Smith EA, Nault BA. Sources of Iris yellow spot virus in New York. Plant Dis. 2011; 95:735–743. DOI: https://doi.org/10.1094/PDIS-05-10-0353




How to Cite

Bohdan, M., Kyrychenko, A., Shcherbatenko, I., & Kraeva, H. (2023). Weed Plants of the Asteraceae and Malvaceae Families as Reservoirs of Harmful Viruses of Vegetable Crops in Ukraine and the World. Mikrobiolohichnyi Zhurnal, 85(5), 66–76. https://doi.org/10.15407/microbiolj85.05.066