Pathophysiological Changes in Response to the Pathogens Administered to Healthy Etroplus maculatus (Teleostei: Cichlidae) and Puntius ticto (Teleostei: Cyprinidae)
DOI:
https://doi.org/10.15407/microbiolj85.02.037Keywords:
Etroplus maculatus, Puntius ticto, Pseudomonas aeruginosa, Enterobacter cloacae, hematological parametersAbstract
The pathogens in fish generate alterations in physiology of fish with consequences in life function decreasing and death. Objective. To analyzed the response of ornamental fish Etroplus maculatus (Teleostei: Cichlidae) and Puntius ticto (Teleostei: Cyprinidae) infected by Pseudomonas aeruginosa (PSA1) and Enterobacter cloacae (EMS1). Methods. Strains of bacteria Pseudomonas aeruginosa (PSA1) and Enterobacter cloacae (EMS1) were obtained from moribund individuals of Etroplus maculatus (Teleostei: Cichlidae) and Puntius ticto (Teleostei: Cyprinidae), also hemaglobin, hematocrit, erythrocyte, and hemoglobin in an erythrocyte, oxygen consumption and ammonium excretion, and histological studies were measured. Results. Hematological parameters (hemaglobin, hematocrit, erythrocyte, hemoglobin in an erythrocyte) denoted an inverse relation with bacterial infection for both species, which was supported by high oxygen consumption, high ammonium excretion, and cell damage showed using histological analysis. Conclusions. These results are similar to observations for inland water and marine fish under culture conditions. The artificial infection of two fish species with two pathogen bacteria generates effects in pathophysiology and can be used for the development of treatment approaches.
Downloads
References
Saharan VV, Verma P, Singh AP. High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquaculture Research, 2020; 51(3):1200-1210. https://doi.org/10.1111/are.14471
Amit, Pandey A, Tyagi A, Khairnar SO. Oral feed-based administration of Lactobacillus plantarum enhances growth, haematological and immunological responses in Cyprinus carpio. Emerging Animal Species. 2022; 3:100003. https://doi.org/10.1016/j.eas.2022.100003
Amenyogbe E, Yang E, Xie R, Huang J, Chen G. Influences of indigenous isolates Pantoea agglomerans RCS2 on growth, proximate analysis, haematological parameters, digestive enzyme activities, serum biochemical parameters, antioxidants activities, intestinal morphology, disease resistance, and molecular immune response in juvenile's cobia fish (Rachycentron canadum). Aquaculture. 2022; 551:737942. https://doi.org/10.1016/j.aquaculture.2022.737942
Jha SK. Isolation and characterization of bacteria with biochemical importance from soil samples of Ranchi city, India. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 2020; 22:648-653.
Prabha H, Nataraj K, Rajesh BR, Chandran, RP. Isolation and molecular characterization of microbial population from the fish "Tilapia" collected from Vembanad lake, Kerala, India. Journal of Materials and Environmental Sciences. 2021; 12:573-583.
Ahmad S, Lashari MH, Farooq N. A preliminary study on devising a hematological formula for estimation of hemoglobin from packed cell volume in beetal goats. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 2022; 74(1):77-82. https://doi.org/10.1590/1678-4162-12568
Zar JH. Biostatistical Analysis. 5th Edition, Prentice-Hall/Pearson, Upper Saddle River, xiii, 2010; 944 p.
R Development Core Team. R: A language and environment for statistical computing. (R foundation for statistical computing, Vienna, Austria). 2021; www.r-project.org
Nair SG, Lipton AP, De los Rios-Escalante P, Ibañez-Arancibia E. Isolation and characterization of bacterial pathogens, Pseudomonas aeruginosa and Enterobacter cloacae from the moribund fish, Etroplus maculatus. Journal of Materials and Environmental Sciences. 2021; 12(10):1332-1349.
Seibel H, Baßmann B, Rebl A. Blood will tell: what hematological analyses can reveal about fish welfare. Frontiers in Veterinary Sciences. 2021; 8: 616955. https://doi.org/10.3389/fvets.2021.616955
Boaventura TP, Souza CF, Ferreira AL, Favero GC, Baldissera MD, Heinzmann BM, Baldisserotto B, Luz RK. The use of Ocimum gratissimum L. essential oil during the transport of Lophiosilurus alexandri: Water quality, hematology, blood biochemistry and oxidative stress. Aquaculture. 2021; 531:735964. https://doi.org/10.1016/j.aquaculture.2020.735964
Casanovas P, Walker SP, Johnston H, Johnston C, Symonds, JE. Comparative assessment of blood biochemistry and haematology normal ranges between Chinook salmon (Oncorhynchus tshawytscha) from seawater and freshwater farms. Aquaculture. 2021; 537:736464. https://doi.org/10.1016/j.aquaculture.2021.736464
Sun B, van Dissel D, Mo I, Boysen P, Haslene-Hox H, Lund H. Identification of novel biomarkers of inflammation in Atlantic salmon (Salmo salar L.) by a plasma proteomic approach. Developmental & Comparative Immunology. 2022; 127:104268. https://doi.org/10.1016/j.dci.2021.104268
Hafsan H, Bokov D, Abdelbasset WK, Khadim MM, Suksatan W, Majdi HSh, Widjaja G, Jalil AT, Qasim MT, Balvardi M. Dietary Dracocephalum kotschyi essential oil improved growth, haematology, immunity and resistance to Aeromonas hydrophila in rainbow trout (Oncorhynchus mykiss). Aquaculture Research. 2022; 58(8):3164-3175. https://doi.org/10.1111/are.15829
Nguyen F, Jonz MG. Replacement of mitochondrion-rich cells during regeneration of the gills and opercular epithelium in zebrafish (Danio rerio). Acta Histochemica, 2021; 123:151738. https://doi.org/10.1016/j.acthis.2021.151738
Bjørgen H, Koppang EO. Anatomy of teleost fish immune structures and organs. Immunogenetics. 2021; 73:53-63. https://doi.org/10.1007/s00251-020-01196-0
Nakayasu C, Yoshinaga T, Kumagai A. Hematology of anemia experimentally induced by repeated in Japanese flounder with comments on the cause of flounder anaemia recently prevailing in Japan. Fish Pathology. 2002; 37(3):125-130. https://doi.org/10.3147/jsfp.37.125
Harikrishnan R, Nisha Rani M, Balasundaram C. Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture. 2003; 221(1/4):41-50. https://doi.org/10.1016/S0044-8486(03)00023-1
Garcia F, Pilarski F, Onaka EM, Ruas de Moraes F, Martins ML. Hematology of Piaractus mesopotamicus fed diets supplemented with vitamins C and E, challenged by Aeromonas hydrophila. Aquaculture. 2007; 271(1/4):39-46. https://doi.org/10.1016/j.aquaculture.2007.06.021
Bailone RL, Martins ML, Mouriño JLP, Vieira FN, Pedrotti FS, Nunes GC, Silva BC. Hematology and agglutination titer after polyvalent immunization and subsequent challenge with Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Archivos de Medicina Veterinaria. 2010; 42(3): 221-227. https://doi.org/10.4067/S0301-732X2010000300015
Paul SI, Rahman MM, Salam MA, Khan MAR, Islam MT. Identification of marine sponge-associated bacteria of the Saint Martin's island of the Bay of Bengal emphasizing on the prevention of motile Aeromonas septicemia in Labeo rohita. Aquaculture, 2021; 545:737156. https://doi.org/10.1016/j.aquaculture.2021.737156
Hossain S, Heo GJ. Ornamental fish: a potential source of pathogenic and multidrug-resistant motile Aeromonas spp. Letters in Applied Microbiology. 2021; 72:2-12. https://doi.org/10.1111/lam.13373
Duman M, Mulet M, Altun S, Saticioglu IB, Ozdemir B, Ajmi N, Lalucat J, García-Valdés E. The diversity of Pseudomonas species isolated from fish farms in Turkey. Aquaculture. 2021; 535:736369. https://doi.org/10.1016/j.aquaculture.2021.736369
Vanamala P, Sindhura P, Sultana U, Vasavilatha, T, Gul MZ. Common bacterial pathogens in fish: An overview. Dar GH, Bhat RA, Qadri H, Al-Ghamdy KM, Hakeem KR, Editors. Bacterial Fish Diseases, Academic Press. 2022; 279-306 pp. https://doi.org/10.1016/B978-0-323-85624-9.00010-5
Ferreira-Martins D, Wilson JM, Kelly SP, Kolosov D, McCormick SD. A review of osmoregulation in lamprey. Journal of Great Lakes Research. 2021; 47:S59-S71. https://doi.org/10.1016/j.jglr.2021.05.003
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Mikrobiolohichnyi Zhurnal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.