Probiotics Based on Lactic Acid Bacteria for Aquaculture

Authors

  • O.M. Vasyliuk Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • S.O. Skrotskyi Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • L.A. Khomenko Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine
  • T.V. Babich Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, 154 Akademika Zabolotnoho Str., Kyiv, 03143, Ukraine

DOI:

https://doi.org/10.15407/microbiolj85.02.075

Keywords:

Lactic acid bacteria, aquaculture, probiotic strains, fish, probiotics

Abstract

Aquaculture (especially fish farming) provides billions of people with nutrients: amino acids, vitamins, minerals, and proteins. Aquaculture of commercial species (rainbow trout, common carp, grass carp, pacific white-legged shrimp, etc.) are growing rapidly and accounts for about a third of the global fish production. It is a major alternative to reducing wild populations that are unable to meet growing food demand. Lactic acid bacteria (LAB) of the genera Lactococcus, Lactobacillus, Lactiplantibacillus, Enterococcus, Leuconostoc, Pediococcus, Streptococcus, Carnobacterium, and Weissella belong to the normobiota of the gastrointestinal (GI) tract of most fish. They play an important role as they stimulate the synthesis of digestive enzymes, prevent intestinal disorders, improve the immune response of the macroorganism, increase the barrier capacity of the mucous membrane due to the colonization of the fish GI tract, activate the resistance to the development of bacterial and viral infections due to the production of a wide range of antimicrobial substances (bacteriocins, organic acids, hydrogen peroxide, etc.). Therefore, Lactobacilli are classified as potential probiotic strains for aquaculture. The combined use of lactic acid bacteria with feed increases their nutritional value, as microorganisms produce a wide range of digestive enzymes that actively participate in the process of digestion and decomposition of feed, as well as positively affect the growth of individuals and stimulate their reproductive activity, which undoubtedly contributes to the active introduction of commercial probiotics based on LAB strains. As a result of growing aquaculture, there are many problems such as stocking density, infectious diseases, excessive use of antibiotics, water pollution, which can be solved with the help of probiotic lactic acid bacteria. Therefore, the review presents current literature data on the use of lactic acid bacteria strains as probiotic preparations for aquaculture, their species composition, probiotic effect on the host, the mechanism of action of probiotics on aquaculture, and the methods for delivery to the macroorganism.

Downloads

Download data is not yet available.

References

Froehlich H, Gentry R, Halpern B. Global change in marine aquaculture production potential under climate change. Nature Ecology & Evolution. 2018; 2(11):1745-1750. https://doi.org/10.1038/s41559-018-0669-1

Christopher C, Ling C, Stefan G, Miguel C, Christopher F, Halley F, et al. The Future of Food from the Sea. Nature. 2020; 588(7836):95-100. https://doi.org/10.1038/s41586-020-2616-y

Ofelio C, Planas M, Pintado J. Administration of the probiotic Lactobacillus rhamnosus IMC 501 as a strategy for the control of Vibrio bacteria in the brine shrimp Artemia. Letters in Applied Microbiology. 2021; 73, 336-342. https://doi.org/10.1111/lam.13518

Bohnes F, Hauschild M, Schlundt J, Laurent A. Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Rev Aquacult. 2019; 1-19. https://doi.org/10.1111/raq.12280

Chambel J, Severiano V, Baptista T, Mendes S, Pedrosa R. Effect of stocking density and different diets on growth of Percula Clownfish, Amphiprion percula. SpringerPlus. 2015; 4(1):183. https://doi.org/10.1186/s40064-015-0967-x

Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, et al. Disease and health management in Asian aquaculture. Vet Parassitol. 2005; 132:249-272. https://doi.org/10.1016/j.vetpar.2005.07.005

Hasan KN, Banerjee G. Recent studies on probiotics as beneficial mediator in aquaculture: a review. The Journal of Basic and Applied Zoology. 2020; 81(1). https://doi.org/10.1186/s41936-020-00190-y

Diyie RL, Aheto DW, Osei-Atweneboana MY, Armah E, Yankson K. Prevalence of bacterial infections and the use of multiplex PCR assay for rapid detection of pathogens in cultured fish in Ghana. Arch Microbiol. 2022; 204(7):394. https://doi.org/10.1007/s00203-022-03001-w

Yamkasem J, Tattiyapong P, Gorgoglione B, Surachetpong W. Uncovering the first occurrence of Tilapia parvovirus in Thailand in tilapia during co‐infection with Tilapia tilapinevirus. Transboundary and Emerging Diseases. 2021;1-9. https://doi.org/10.1111/tbed.14143

Karsidani SH, Soltani M, Nikbakhat-Brojeni G, Ghasemi M, Skall HF. Molecular epidemiology of zoonotic streptococcosis/lactococcosis in rainbow trout (Oncorhynchus mykiss) aquaculture in Iran. Iranian J Microbiol. 2010; 2:198.

Kahieshesfandiari M, Nami Y, Lornezhad G, Kiani A, Javanmard A, Jaymand M, et al. Herbal hydrogel‐based encapsulated Enterococcus faecium ABRIINW.N7 improves the resistance of red hybrid tilapia against Streptococcus iniae. J Applied Microbiology. 2021; 131(5):2516-2527. https://doi.org/10.1111/jam.15098

Wang YB, Tian ZQ, Yao JT, Li WF. Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture. 2008; 277(3-4):203-207. https://doi.org/10.1016/j.aquaculture.2008.03.007

Austin B, Austin DA. Bacterial fish pathogens: diseases of farmed and wild fish. 4th ed. New York-Chichester: Springer-Praxis Publishing. 2007; 654.

Pacheco-Vega JM, Cadena-Roa MA, Leyva-Flores JA, Zavala-Leal OI, Pérez-Bravo E, Ruiz-Velazco JMJ. Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture. Aquacult Rep. 2018; 11:24-30. https://doi.org/10.1016/j.aqrep.2018.05.003

Gao X, Zhang M, Li X, Han Y, Wu F, Liu Y. The effects of feeding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish Shellfish Immunol. 2018; 78:42-51. https://doi.org/10.1016/j.fsi.2018.04.010

Pacheco I, Díaz-Sánchez S, Contreras M, Villar M, Cabezas-Cruz A, Gortázar C, et al. Probiotic Bacteria with High Alpha-Gal Content Protect Zebrafish against Mycobacteriosis. Pharmaceuticals. 2021;14(7):635. https://doi.org/10.3390/ph14070635

Skwor T, Shinko J, Augustyniak A, Gee C, Andraso G. Aeromonas hydrophila and Aeromonas veronii predominate among potentially pathogenic ciprofloxacin- and tetracycline-resistant aeromonas isolates from Lake Erie. Appl Environ Microbiol. 2014; 80:841-848. https://doi.org/10.1128/AEM.03645-13

Arani MM, Salati AP, Keyvanshokooh S, Safari O. The effect of Pediococcus acidilactici on mucosal immune responses, growth, and reproductive performance in zebrafish (Danio rerio). Fish Physiol Biochem. 2021; 47:153-162. https://doi.org/10.1007/s10695-020-00903-8

Ljubobratovic U, Kosanovic D, Vukotic G, Molnar Z, Stanisavljevic N, Ristovic T, et al. Supplementation of lactobacilli improves growth, regulates microbiota composition and suppresses skeletal anomalies in juvenile pike-perch (Sander lucioperca) reared in recirculating aquaculture system (RAS): A pilot study. Res Vet Sci. 2017; 115:451-462. https://doi.org/10.1016/j.rvsc.2017.07.018

Chang CI, Liu WY. An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing edwardsiellosis in cultured European eel, Anguilla anguilla L. Journal of Fish Diseases. 2002; 25(5):311-315. https://doi.org/10.1046/j.1365-2761.2002.00365.x

Kowalski DA, Cordes RJ, Riepe TB, Drennan JD, Andrew J. Prevalence and distribution of Renibacterium salmoninarum, causative agent of bacterial kidney disease, in wild trout fisheries in Colorado. Dis Aquat Organ. 2022;149:109-120. https://doi.org/10.3354/dao03664

Kibenge FS. Emerging viruses in aquaculture. Current Opinion in Virology. 2019; 34:97-103. https://doi.org/10.1016/j.coviro.2018.12.008

Harikrishnan R, Balasundaram C, Heo MS. Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV). Fish & Shellfish Immunology. 2010; 29(5):868-874. https://doi.org/10.1016/j.fsi.2010.07.031

Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol. 2021; 12:653025. https://doi.org/10.3389/fimmu.2021.653025

Lategan, MJ, Torpy FR, Gibson LF. Biocontrol of saprolegniosis in silver perch Bidyanus bidyanus (Mitchell) by Aeromonas media strain A100. Aquaculture. 2004; 235:77-88. https://doi.org/10.1016/j.aquaculture.2003.09.014

Fernández-Juri MG, Muzzolón JA, Dalcero AM, Magnoli CE. Effect of acid lactic bacteria isolated from faeces of healthy dogs on growth parameters and aflatoxin B1 production by Aspergillus species in vitro. Mycotoxin Res. 2011; 27:273-80. https://doi.org/10.1007/s12550-011-0104-9

Almeida IFM, Martins HML, Santos SMO, Freitas MS, Da Costa JMGN, Bernardo FMA. Mycobiota and aflatoxin B1 in feed for farmed sea bass (Dicentrachus labrax). Toxins. 2011; 3:163-171. https://doi.org/10.3390/toxins3030163

Іnternational Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans: Traditional her LAB medicines, some mycotoxins, naphthalene and styrene. IARC Scientific Publication. IARC Lyon. 2002; 601 p.

Santacroce MP, Conversano MC, Casalino E, Lai O, Zizzadoro C, Centoducati G, Crescenzo G. Aflatoxins in aquatic species: metabolism, toxicity and perspectives. Rev Fish Biol Fish. 2008; 18:99-130. https://doi.org/10.1007/s11160-007-9064-8

Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, et al. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Applied Microbiology. 2020; 129:116-136. https://doi.org/10.1111/jam.14628

Cabello FC: Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006; 8:1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x

Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, et al. Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology. 2013; 13:15. https://doi.org/10.1186/1471-2180-13-15

Hai NV. Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol. 2015; 45:592-597. https://doi.org/10.1016/j.fsi.2015.05.026

Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev. 2000; 64:655-671. https://doi.org/10.1128/MMBR.64.4.655-671.2000

Jahangiri L, Esteban MÁ. Administration of probiotics in the water in finfish aquaculture systems: a review. Fishes. 2018; 3(3):33. https://doi.org/10.3390/fishes3030033

Govindaraj K, Samayanpaulraj V, Narayanadoss V, Uthandakalaipandian R. Isolation of lactic acid bacteria from intestine of freshwater fishes and elucidation of probiotic potential for aquaculture application. Probiotics and Antimicrobial Proteins. 2021; 13:1598-1610. https://doi.org/10.1007/s12602-021-09811-6

Biliavska L, Pankivska Y, Povnitsa O, Zagorodnya S. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5. Medicina. 2019; 55(9):519. https://doi.org/10.3390/medicina55090519

FAO/WHO: Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food Nutr Pap. 2006; 85:1-50.

EFSA: Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. The EFSA Journal 2007, 587:1-16. https://doi.org/10.2903/j.efsa.2007.587

Ridha MT, Azad IS. Effect of autochthonous and commercial probiotic bacteria on growth, persistence, immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus. Aquac Res. 2016; 47:2757-2767. https://doi.org/10.1111/are.12726

Sica MG, Brugnoni LI, Marucci PL, Cubitto MA. Characterization of probiotic properties of lactic acid bacteria isolated from an estuarine environment for application in rainbow trout (Oncorhynchus mykiss, Walbaum) farming. Antonie Van Leeuwenhoek. 2012; 101:869-879. https://doi.org/10.1007/s10482-012-9703-5

Brinchmann MF. Immune relevant molecules identified in the skin mucus of fish using -omics technologies, Mol Biosyst. 2016; 12(7):2056-2063. https://doi.org/10.1039/C5MB00890E

Van Doan H, Hoseinifar SH, Naraballobh W, Paolucci M, Wongmaneeprateep S, Charoenwattanasak S, et al. Dietary inclusion of watermelon rind powder and Lactobacillus plantarum: Effects on Nile tilapia's growth, skin mucus and serum immunities, and disease resistance. Fish & Shellfish Immunology, 2021; 116:107-114. https://doi.org/10.1016/j.fsi.2021.07.003

Korkea-Aho TL, Papadopoulou A, Heikkinen J, Von Wright A, Adams A, Austin B, et al. Pseudomonas M162 confers protection against rainbow trout fry syndrome. J Appl Microbiol. 2012; 113:24-35. https://doi.org/10.1111/j.1365-2672.2012.05325.x

Taoka Y, Maeda H, Jo JY, Kim SM, Park SI, Yoshikawa T, et al. Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fish Sci. 2006; 72:755-766. https://doi.org/10.1111/j.1444-2906.2006.01215.x

Sun YZ, Yang HL, Ma RL, Lin WY. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol. 2010; 29:803-809. https://doi.org/10.1016/j.fsi.2010.07.018

Van Doan H, Hoseinifar SH, Tapingkae W, Seel-Audom M, Jaturasitha S, Dawood MAO, et al. Boosted growth performance, mucosal and serum immunity, and disease resistance Nile tilapia (Oreochromis niloticus) fingerlings using corncob-derived xylooligosaccharide and Lactobacillus plantarum CR1T5, Probiotics Antimicrob Proteins. 2020; 12(2):400-411. https://doi.org/10.1007/s12602-019-09554-5

Iorizzo M, Albanese G, Letizia F, Testa B, Tremonte P, Vergalito F, et al. Probiotic Potentiality from versatile Lactiplantibacillus plantarum strains as resource to enhance freshwater fish health. Microorganisms. 2022; 10:463. https://doi.org/10.3390/microorganisms10020463

Hoseinifar SH, Yousefi S, Van Doan H, Ashouri G, Gioacchini G, Maradonna F, et al. Oxidative Stress and Antioxidant Defense in Fish: The Implications of Probiotic, Prebiotic, and Synbiotics. Rev Fish Sci Aquac. 2021; 29:198-217. https://doi.org/10.1080/23308249.2020.1795616

Livingstone DR, RevueOxidative stress in aquatic organisms in relation to pollution and aquaculture. De Med Vet. 2003; 6:427.

Chowdhury S, Saikia S. Oxidative stress in fish: A Review. J Sci Res. 2020; 12:145-160. https://doi.org/10.3329/jsr.v12i1.41716

Lushchak VI. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol. 2011; 101:13-30. https://doi.org/10.1016/j.aquatox.2010.10.006

Feng T, Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A Systematic Review. Gut Microbes. 2020; 12:1801944. https://doi.org/10.1080/19490976.2020.1801944

Izuddin WI, Humam AM, Loh TC, Foo HL, Samsudin AA. Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants. 2020; 9:250. https://doi.org/10.3390/antiox9030250

Ten Doeschate KI, Coyne VE. Improved growth rate in farmed Haliotis midae through probiotic treatment. Aquaculture. 2008; 284:174-179. https://doi.org/10.1016/j.aquaculture.2008.07.018

Adel M, El-Sayed A, Yeganeh S, Dadar M, Giri S. Efect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics Antimicro Prot. 2017; 9:150-156. https://doi.org/10.1007/s12602-016-9235-9

Brian Austin SM. Sharifuzzaman. Probiotics in Aquaculture. 2022; 193-202. https://doi.org/10.1007/978-3-030-98621-6

Melgar Valdes CE, Barba Macías E, Alvarez-González CA, Tovilla Hernández C, Sánchez AJ. Microorganisms effect with probiotic potential in water quality and growth of the shrimp Litopenaeus vannamei (Decapoda: Penaeidae) in intensive culture. Revista de Biología Tropical. 2013; 61(3):1215-1228. https://doi.org/10.15517/rbt.v61i3.11936

Gomes LC, Brinn RP, Marcon JL, Dantas LA, Brand~ao FR, De Abreu JS, et al. Benefits of using the probiotic EfinolL during transportation of cardinal tetra, Paracheirodon axelrodi (Schultz), in the Amazon. Aquac Re. 2009; 40:157-165. https://doi.org/10.1111/j.1365-2109.2008.02077.x

Standen BT. Rawling MD, Davies SJ, Castex M, Foey A, Gioacchini G, et al. Probiotic Pediococcus acidilactici modulates both localised intestinal and peripheral-immunity in tilapia (Oreochromis niloticus). Fish&Shellfish Immunology. 2013; 35(4):1097-1104. https://doi.org/10.1016/j.fsi.2013.07.018

Nayak SK. Role of gastrointestinal microbiota in fish. Aquaculture Research. 2010; 746(41,11):1553-1573. https://doi.org/10.1111/j.1365-2109.2010.02546.x

Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic Acid Bacteria in Finfish-An Update. Review Front Microbiol. 2018; 9:1818. https://doi.org/10.3389/fmicb.2018.01818

Van Doan H, Hoseinifar SH, Ringø E, Angeles Esteban M, Dadar M, Dawood MA, et al. Host-associated probiotics: a key factor in sustainable aquaculture. Rev Fish Sci Aquac. 2020; 28(1):16-42. https://doi.org/10.1080/23308249.2019.1643288

Yamashita MM, Ferrarezi JV, Pereira GV, Bandeira G, da Silva BC, et al. Autochthonous vs allochthonous probiotic strains to Rhamdia quelen. Microbial Pathogenesis. 2020; 139:103897. https://doi.org/10.1016/j.micpath.2019.103897

Azad IS, Ai-Marzouk A. Autochthonous aquaculture probiotics-A critical analysis. Research J Biotechnology. 2008; 3:171-177.

Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic acid bacteria in finfish-An Update. Front Microbiol. 2018; 9:1818. https://doi.org/10.3389/fmicb.2018.01818

Cai Y, Suyanandana P, Saman P, Benno Y. Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. J Gen Appl Microbiol. 1999; 45:177-184. https://doi.org/10.2323/jgam.45.177

Tarnecki AM, Burgos FA, Ray CL, Arias CR. Fish intestinal microbiome: diversity and symbiosis unraveled by metagenomics. J Appl Microbiol. 2017; 123:2-17. https://doi.org/10.1111/jam.13415

Halami PM, Chandrashekar A, Joseph R. Characterization of bacteriocinogenic strains of lactic acid bacteria in fowl and fish intestine and mushroom. Food Biotechnol. 1999; 13:121-136. https://doi.org/10.1080/08905439909549966

Shahid M, Hussain B, Riaz D, Khurshid M, Ismail M, et al. Identification and partial characterization of potential probiotic lactic acid bacteria in freshwater Labeo rohita and Cirrhinus mrigala. Aquacult. 2017; 48:1688-1698. https://doi.org/10.1111/are.13006

Ghiasi M, Binaii M, Naghavi A, Rostami HK, Nori H, Amerizadeh A. Inclusion of Pediococcus acidilactici as probiotic candidate in diets for beluga (Huso huso) modifies biochemical parameters and improves immune functions. Fish Physiology and Biochemistry. 2018; 44(4):1099-1107. https://doi.org/10.1007/s10695-018-0497-x

Martinez MP, Gonzalez Pereyra ML, Pena GA, Poloni V, Fernandez Juri G, Cavaglieri LR. Pediococcus acidolactici and Pediococcus pentosaceus isolated from a rainbow trout ecosystem have probiotic and ABF1 adsorbing/degrading abilities in vitro. Food Additives & Contaminants: Part A. 2017; 34(12):2118-2130. https://doi.org/10.1080/19440049.2017.1371854

Rengpipat S, Rueangruklikhit T, Piyatiratitivorakul S. Evaluations of lactic acid bacteria as probiotics for juvenile seabass Lates calcarifer. Aquacult. 2014; 39:134-143. https://doi.org/10.1111/j.1365-2109.2007.01864.x

Lyons PP, Turnbull JF, Dawson KA, Crumlish M. Exploring the microbial diversity of the distal lumen and mucosa of farmed rainbow trout Oncorhynchus mykiss (Walbaum) using next generation sequencing (NGS). Aquacult Res. 2017; 48:77-91. https://doi.org/10.1111/are.12863

Boonanuntanasarn S, Tiengtam N, Pitaksong T, Piromyou P, Teaumroong N. Effects of dietary inulin and Jerusalem artichoke (Helianthus tuberosus) on intestinal microbiota community and morphology of Nile tilapia (Oreochromis niloticus) fingerlings. Aquacult Nutr. 2017; 24:712-722. https://doi.org/10.1111/anu.12600

Cingelova Maruscakova I, Schusterova P, Popelka P, Gancarcíkova S, Csank T, et al. Effect of autochthonous lactobacilli on immunologically important molecules of rainbow trout after bacterial infection studied on intestinal primoculture. Fish and Shellfish Immunology. 2021; 119:379-383. https://doi.org/10.1016/j.fsi.2021.10.021

He S, Ran C, Qin C, Li S, Zhang H, de Vos WM, et al. Antiinfective effect of adhesive probiotic Lactobacillus in fish is correlated with their spatial distribution in the intestinal tissue. Scientific Reports, 2017; 7(1):13195. https://doi.org/10.1038/s41598-017-13466-1

Dohail A, Abdullah M, Roshada H, Aliyu-Paiko M. Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquaculture Research. 2009; 40(14):1642-1652. https://doi.org/10.1111/j.1365-2109.2009.02265.x

Talpur AD, Memon AJ, Khan MI, Ikhwanuddin M, Abdullah MDD, Bolong AMA. Gut Lactobacillus sp. bacteria as probiotics for Portunus pelagicus (Linnaeus, 1758) larviculture: effects on survival, digestive enzyme activities and water quality. Invertebrate Reproduction and Development. 2013; 57(3):173-184. https://doi.org/10.1080/07924259.2012.714406

Panigrahi A, Kiron V, Satoh S, Watanabe T. Probiotic bacteria Lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Physiology and Biochemistry. 2010; 36(4):969-977. https://doi.org/10.1007/s10695-009-9375-x

Harikrishnan R, Kim MC, Kim JS, Balasundaran C, Heo MS. Protective effect of herbal and probiotics enriched diet on haematological and immunity status of Oplegnathus fasciatus (Temminck and Schlegel) against Edwarsiella tarda. Fish. Shellfish Immun. 2011; 30:886-893. https://doi.org/10.1016/j.fsi.2011.01.013

Lee JS, Cheng H, Damte D, Lee SJ, Kim JC, Rhee MH, et al. Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish Shellfish Immun. 2013; 34:756-761. https://doi.org/10.1016/j.fsi.2012.11.028

Liu W, Ren P, He S, Xu L, Yang Y, Gu Z, et al. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains. Fish Shellfish Immun. 2013; 35:54-62. https://doi.org/10.1016/j.fsi.2013.04.010

Villamil L, Figueras A, Planas M, Novoa B. Pediococcus acidilactici in the culture of turbot (Psettamaxima) larvae: Administration pathways. Aquaculture. 2010; 307:83-88. https://doi.org/10.1016/j.aquaculture.2010.07.004

Carnevali O, Zamponi MC, Sulpizio R, Rollo A, Nardi M, Orpianesi C, et al. Administration of probiotic strain to improve sea bream wellness during development. Aquaculture International. 2004; 12(4-5):377-386. https://doi.org/10.1023/B:AQUI.0000042141.85977.bb

Ushakova NA, Pravdin VG, Kravtsova LZ, Ponomarev SV, Gridina TS, Ponomareva EN, et al. Complex bioactive supplements for aquaculture-Evolutionary development of probiotic concepts. Probiotics and Antimicrobial Proteins. 2021; 13:1696-1708. https://doi.org/10.1007/s12602-021-09835-y

Ahmed N, Mohamad N. Aquaculture Production and Value Chains in the COVID 19 Pandemic. Curr Environ Health Rep. 2022; 9(3):423-435. https://doi.org/10.1007/s40572-022-00364-6

Daniels CL, Merrifield DL, Ringø E, Davies SJ. Probiotic, prebiotic and synbiotic applications for the improvement of larval European lobster (Homarus gammarus) culture. Aquaculture. 2013; 416-417:396-406. https://doi.org/10.1016/j.aquaculture.2013.08.001

Sun Y-Z, Yang H-L, Huang K-P, Ye J-D, Zhang C-X. Application of autochthonous Bacillus bioencapsulated in copepod to grouper Epinepheluscoioides larvae. Aquaculture. 2013; 392-395:44-50. https://doi.org/10.1016/j.aquaculture.2013.01.037

Planas M, Pérez-Lorenzo M, Hjelm M, Gram L, Fiksdal IU, Bergh Ø, et al. Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture. 2006; 255:323-333. https://doi.org/10.1016/j.aquaculture.2005.11.039

Robertson P, O'Dowd C, Burrells C, Williams P, Austin B. Use of Carnobacterium sp. a probiotic for Atlantic Salmon (Salmo salar L.) and rainbow trout (Oncorhyncus mykiss, Walbaum). Aquaculture. 2000; 185:235-243. https://doi.org/10.1016/S0044-8486(99)00349-X

Picchietti S, Mazzini M, Taddei AR, Renna R, Fausto AM, Mulero V, et al. Effects of administration of probiotic strains on GALT of larval gilthead seabream: immunohistochemical and ultrastructural studies. Fish Shellfish Immunol. 2007; 722 (1-2):57-67. https://doi.org/10.1016/j.fsi.2006.03.009

Cordero H, Guardiola FA, Tapia-Paniagua ST, Cuesta A, Meseguer J, Balebona MC. Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2015; 45:608-618. https://doi.org/10.1016/j.fsi.2015.05.010

Zhang CN, Zhang JL, Guan WC, Zhang XF, Guan SH, Zeng QH, et al. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var, Fish Shellfish Immunol. 2017; 68:84-91. https://doi.org/10.1016/j.fsi.2017.07.012

Jesus G, Vieira F, Silva B, Junior M, Ushizima T, Schmidt E, et al. Probiotic bacteria may prevent haemorrhagic septicaemia by maturing intestinal host defences in Brazilian native surubins. Aquacult. Nutr. 2017; 23:484-491. https://doi.org/10.1111/anu.12416

Al-Dohail MA, Hashim R, Aliyu-Paiko M. Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling. Aquaculture Research. 2009; 40(14):1642-1652. https://doi.org/10.1111/j.1365-2109.2009.02265.x

Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H. Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Veterinary Immunol and Immunopath. 2004; 102(4):379-388. https://doi.org/10.1016/j.vetimm.2004.08.006

Rahiman K, Jesmi Y, Thomas AP, Hatha A. Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquaculture Research. 2010; 41:120-134. https://doi.org/10.1111/j.1365-2109.2009.02473.x

Vijayan KK, Singh ISB, Jayaprakash NS, Alavandi SV, Pai S, Preetha R, et al. A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems. Aquaculture. 2006; 251:192-200. https://doi.org/10.1016/j.aquaculture.2005.10.010

Pérez-Lomba RM. Aplicación de bacterias lácticas nos sistemas de cultivo larvario de peixes. Tese de Licenciatura. University of Vigo, Spain. 2001; 74 p.

Ringø E, Salinas I, Olsen RE, Nyhaug A, Myklebust R, Mayhew TM. Histological changes in Atlantic salmon (Salmo salar L.) intestine following in vitro exposure to pathogenic and probiotic bacterial strains. Cell and Tissue Research 2007; 328:109-116. https://doi.org/10.1007/s00441-006-0323-0

Yukhimenko LN, Bychkova LI, Koidan GS. Compound feed with probiotic as a means of preventing fish diseases. Collection of scientific works IFF: Feed Physiol Fish. 2001; 77:91-95.

Muller JA, Ross RP, Fitzgeralk GF, Stanton C. Manufacture of Probiotic Bacteria. Prebiotics and Probiotics Science and Technology. 2009; 125-759. https://doi.org/10.1007/978-0-387-79058-9_18

Irianto A, Austin B. Probiotics in aquaculture. Journal of Fish Diseases. 2002; 25(11):633-642. https://doi.org/10.1046/j.1365-2761.2002.00422.x

Hai NV. The use of probiotics in aquaculture. J Applied Microbiology. 2015; 119(4):917-935. https://doi.org/10.1111/jam.12886

Beck BR, Kim D, Jeon J, Lee S-M, Kim HK, Kim O-J, et al. The effects of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on innate immunity and disease resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 2015; 42:177-183. https://doi.org/10.1016/j.fsi.2014.10.035

Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J. Effects of single and combined supplementation of Enterococcus faecalis, mannanoligosaccharide and polyhydrobutyric acid on growth performance and immune response of rainbow trout Oncorhynchus mykiss. Aquac Sci. 2009; 57:609-617.

Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H. The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture. 2005; 243;241-254. https://doi.org/10.1016/j.aquaculture.2004.09.032

Irianto A, Austin B. Use of dead probiotic cells to control furunculosis in rainbow trout Oncorhynchusmykiss (Walbaum). J Fish Dis. 2003; 26:59-62. https://doi.org/10.1046/j.1365-2761.2003.00414.x

Chang C-I, Liu W-Y. An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi for reducing edwardsiellosis in cultured European eel, Anguilla anguilla L. J Fish Diseases. 2002; 25(5):311-315. https://doi.org/10.1046/j.1365-2761.2002.00365.x

Abasali H, Mohamad S. Effect of dietary supplementation with probiotic on reproductive performance of female livebearing ornamental fish. Research J Animal Sciences. 2010; 4(4):103-107. https://doi.org/10.3923/rjnasci.2010.103.107

Downloads

Published

2023-04-25

How to Cite

Vasyliuk, O., Skrotskyi, S., Khomenko, L., & Babich, T. (2023). Probiotics Based on Lactic Acid Bacteria for Aquaculture. Mikrobiolohichnyi Zhurnal, 85(2), 75-92. https://doi.org/10.15407/microbiolj85.02.075